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Abstract

In recent years, Convolutional Neural Networks (ConvNets) have become an
enabling technology for a wide range of novel embedded Artificial Intelligence
systems. Across the range of applications, the performance needs vary significantly,
from high-throughput video surveillance to the very low-latency requirements of
autonomous cars. In this context, FPGAs can provide a potential platform that
can be optimally configured based on the different performance needs. However,
the complexity of ConvNet models keeps increasing making their mapping to an
FPGA device a challenging task. This work presents fpgaConvNet, an end-to-end
framework for mapping ConvNets on FPGAs. The proposed framework employs
an automated design methodology based on the Synchronous Dataflow (SDF)
paradigm and defines a set of SDF transformations in order to efficiently explore
the architectural design space. By selectively optimising for throughput, latency or
multiobjective criteria, the presented tool is able to efficiently explore the design
space and generate hardware designs from high-level ConvNet specifications,
explicitly optimised for the performance metric of interest. Overall, our framework
yields designs that improve the performance by up to 6.65× over highly optimised
embedded GPU designs for the same power constraints in embedded environments.

1 Introduction

In recent years, the Deep Learning model of Convolutional Neural Networks (ConvNets) has pushed
the boundaries of several Artificial Intelligence tasks. From object tracking [1] to drone trail
navigation [2], ConvNets have been an enabling technology behind a wide variety of applications. In
the embedded space, novel complex systems such as autonomous drones and self-driving cars are
employing multiple ConvNets in order to perceive their surroundings and ultimately execute their
high-level tasks. At the same time, embedded systems pose stringent requirements with respect to
throughput, latency and power consumption which becomes a challenge in the case of computationally
heavy ConvNets. With general purpose parallel architectures reaching the limit of satisfying these
constraints, specialised hardware solutions are becoming a necessity.

In this context, reconfigurable hardware in the form of Field-Programmable Gate Arrays (FPGAs)
emerges as a promising alternative. FPGAs offer the benefits of customisability and reconfigurability
by means of a set of heterogeneous hardware resources with programmable interconnections between
them. With FPGAs’ size and resource specifications advancing at a fast pace and with ConvNets
becoming more complex, the possible mappings of a ConvNet on an FPGA lie in a large multidimen-
sional design space that cannot be explored manually. At the same time, the diversity of ConvNet
application domains results in a wide spectrum of performance needs. To this end, there is a need
for tools that abstract the low-level resource details of a particular FPGA and automate the mapping
of ConvNets on FPGAs in a principled manner while satisfying the application-level performance
needs.
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In this context, we present fpgaConvNet [3], an automated ConvNet-to-FPGA framework that
bridges the gap between the existing Deep Learning software ecosystem and FPGAs. The presented
framework consists of the following features:

• Supporting a Caffe front end and capturing analytically by means of a Synchronous Dataflow
(SDF) model the ConvNet workload and the target FPGA resource budget.

• Formulating the design space exploration as a mathematical optimisation problem and opti-
mising with respect to throughput, latency or multiobjective criteria based on the application-
level performance requirements.

• Generating optimised streaming accelerators for ConvNet models with both regular layer
connectivity, such as AlexNet [4] and VGG16 [5], and models with irregular dataflow,
including inception-based [6], residual [7] and dense [8] networks. Moreover, we present
the first mapping of DenseNet-161 on FPGAs.

• Demonstrating up to 6.65× higher performance over highly optimised GPU designs for the
same power constraints in embedded environments.

2 Synchronous Dataflow Modelling for ConvNets

2.1 Modelling ConvNets with SDF

By interpreting ConvNet inference as a streaming application, fpgaConvNet employs the Synchronous
Dataflow model of computation as its modelling core. Synchronous Dataflow (SDF) [9] is widely
used for the analysis and design of parallel systems. Under this scheme, a computing system is
modelled as a directed graph (SDFG), with the nodes representing computations and with arcs in
place of data streams between them. The basic principle of SDF is the data-driven execution where
each node fires whenever data are available at its incoming arcs. In this context, we propose and
use an SDF model for capturing ConvNet workloads and representing hardware mappings by means
of linear algebra and graph theory. This formulation enables us to capture each design point with
a number of compile-time configurable parameters and explore efficiently the architectural design
space by means of a set of proposed transformations. The transformations can be expressed as
algebraic operations and applied directly over the SDF model of a design point in order to modify
the performance-resource characteristics of the potential implementation. Moreover, the proposed
modelling approach enables us to formally express the design space exploration as a mathematical
optimisation problem.

2.2 ConvNet Hardware Mappings as SDF Graphs

At a hardware level, fpgaConvNet represents design points as SDF graphs that can execute the input
ConvNet workload. Given a target ConvNet, each layer is mapped to a sequence of hardware building
blocks that implement the layer’s functionality. By assigning one SDF node to each building block, an
SDF graph is constructed. The nodes of the SDFG are connected via arcs which carry data between
building blocks. Each building block is defined by a set of parameters that can be configured at
compile time. This process leads to the formation of a hardware architecture which consists of a
coarse pipeline of building blocks and corresponds to a design point in the architectural design space.
The SDF graph of a design point can be represented equivalently by means of a topology matrix
Γ∈R(M×N) parametrised over the tunable parameters of each instantiated building block, where M

Γ =
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Figure 1: Illustration of representing the hardware mapping (1a) and the workload (1b) of a convolu-
tional layer by means of fpgaConvNet’s SDF model
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Figure 2: SDF Transformations: (a) graph partitioning with reconfiguration, (b) coarse- and fine-
grained folding, (c) weights reloading.
and N are the number of nodes and arcs in the SDFG respectively. The element Γ(a,n) holds the
data rate of node n at arc a, with positive and negative sign for data production and consumption
respectively. Fig. 1a shows an example of the graph and matrix representations of a convolutional
layer’s hardware mapping.

2.3 ConvNet Workloads as SDF Graphs

A ConvNet workload is represented as a stream of data flowing through a sequence of building blocks.
By creating a workload matrix W whose columns hold the local workload at the input and output of
each building block in the architecture, a compact and distributed representation of the computational
workload can be constructed (Fig. 1b). The amount of work, W in

i and W out
i , carried out by the

ith hardware block during ConvNet inference is defined as the total number of data elements to be
consumed and produced by this block respectively.

2.4 SDF Transformations for Efficient Design Space Exploration

To modify the configurable parameters of each hardware building block, fpgaConvNet introduces
four transformations: (1) graph partitioning with reconfiguration, (2) coarse-grained folding,
(3) fine-grained folding and (4) weights reloading. Graph partitioning with reconfiguration is tailored
to high-throughput applications and achieves high throughput by partitioning a ConvNet along its
depth and constructing one SDF subgraph per partition. One distinct architecture is generated per
subgraph tailored to the subgraph’s workload, which can exploit all the resources of the target FPGA
to reach high performance. The execution of each subgraph requires the full reconfiguration of the
FPGA and fpgaConvNet amortises the reconfiguration time overhead by means of batch processing,
leading to high-throughput mappings (Fig. 2a). Coarse-grained folding enables the tuning of the
number of coarse units for each layer, spanning from a fully parallel implementation down to a
single, time-shared compute unit (Fig. 2b). Fine-grained folding allows the configuration of the
dot product implementation inside the convolutional units of a layer, spanning from a fully parallel
implementation down to a single, time-shared multiply-accumulate unit (Fig. 2b). The weights
reloading transformation is tailored to latency-sensitive applications and provides a method of exe-
cuting several subgraphs without adding a penalty on latency due to full FPGA reconfiguration [10].
Similarly to graph partitioning with reconfiguration, this transformation partitions the SDFG into
several subgraphs. However, instead of generating a distinct, fixed architecture for each subgraph, a
single flexible reference architecture is derived, by holistically optimising across all the subgraphs,
which is capable of executing the workloads of all the subgraphs by operating in different modes
(Fig. 2c).

We express all transformations as algebraic operations that can be applied directly over the SDF
model. In this manner, we build analytical throughput and latency estimators for design points
together with resource consumption models parametrised with respect to the tunable parameters of
each building block, and cast the design space exploration to an optimisation problem.

3 Evaluation

3.1 Comparison with Embedded GPUs

In power-constrained mobile and embedded ConvNet applications, the primary metrics of inter-
est comprise (1) the absolute power consumption and (2) the performance efficiency in terms of
performance-per-Watt. In this respect, we investigate the performance efficiency of fpgaConvNet
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(a) Evaluation on high-throughput applications with
favourable batch size.
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(b) Evaluation on latency-sensitive applications with
batch size of 1.

Figure 3: Comparison of fpgaConvNet on Zynq 7045 with Tegra X1 on throughput-driven (a) and
latency-driven (b) applications. Both platforms are evaluated with a power budget of 5 W.

by targeting the Xilinx Zynq 7045 FPGA which is an industry standard for mobile applications and
comparing with the widely used, high-performance low-power NVIDIA Tegra X1 platform.

Our evaluation is focused on ConvNets that are commonly used as pre-trained models and includes
widely employed networks with regular layer connectivity (AlexNet, VGG16) and irregular dataflow
(GoogLeNet, ResNet-152, DenseNet-161). For the execution of the benchmarks on Tegra X1, we use
the TensorRT framework with cuDNN v6 and FP16 precision in order to obtain highly optimised
mappings. For the FPGA, we employ 16-bit fixed-point arithmetic (FXP16). Furthermore, power
measurements for both platforms are obtained via a power monitor and we subtract the idle power in
order to obtain the power due to benchmark execution.

Discussion. Tegra X1 mounts a 256-core GPU and supports a range of clock frequencies up to
998 MHz, with a peak of 1024 GFLOPS at around 15 W with FP16. To investigate the performance
of each platform under the same absolute power constraints that would be present in an embedded
setting, we configure the frequency of the GPU with 76.8 MHz and the FPGA at 125 MHz for the
same power budget of 5 W. With this setup, Tegra X1 and Zynq 7045 have a peak performance
of 79 GFLOPS and 270 GOp/s with a memory bandwidth of 12.8 GB/s and 4.2 GB/s respectively.
Fig. 3a and 3b show the measured throughput for each ConvNet on Tegra X1 and Zynq 7045 for
throughput-driven and latency-driven applications respectively. For throughput-driven applications,
fpgaConvNet achieves a throughput improvement over Tegra X1 of up to 5.53× with an average
of 3.32× (3.07× geo. mean) across the benchmarks. For latency-driven scenarios, fpgaConvNet
demonstrates a throughput improvement of up to 6.65× with an average of 3.95× (3.43× geo. mean).
To investigate the peak performance-per-Watt, we run the same benchmarks on the GPU with
maximum frequency of 998 MHz. In this setting, for throughput-driven applications, fpgaConvNet
achieves 1.17×(1.12× geo. mean) improvement in GOp/s/W and for latency-driven applications,
fpgaConvNet achieves 1.70× (1.36× geo. mean) over Tegra X1. Based on the presented evaluation,
fpgaConvNet demonstrates gains in performance-per-Watt across the benchmarks and reaches higher
raw performance over highly optimised GPU mappings when comparable power constraints are
present as is common in mobile and embedded systems.

4 Conclusion

The deployment of Convolutional Neural Networks in the embedded space is posing challenges due
to the computational complexity of ConvNets and the stringent performance and power constraints of
mobile and embedded applications. In this respect, the development of specialised hardware solutions
for the efficient processing of ConvNets has emerged as a promising approach. In this context,
fpgaConvNet is a framework that automates the optimised mapping of Convolutional Neural Networks
on FPGAs, targeting models with both regular and irregular layer connectivity. fpgaConvNet
introduces an SDF-based design methodology in order to traverse efficiently the FPGA architectural
design space. By casting the design space exploration task as a multiobjective optimisation problem,
fpgaConvNet is able to effectively target applications with a variety of performance needs, from high
throughput to low latency. Quantitative evaluation demonstrates that the fpgaConvNet-generated
accelerators manage to achieve higher performance-per-Watt than highly optimised embedded GPU
designs and reach higher raw performance under the same power constraints, and therefore provides
the infrastructure for the deployment of ConvNet models on embedded FPGAs.
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