
Towards Heterogeneous Solvers for Large-Scale
Linear Systems

Stylianos I. Venieris, Grigorios Mingas and Christos-Savvas Bouganis
Department of Electrical and Electronic Engineering

Imperial College London
London, UK

Email: {stylianos.venieris10, g.mingas10, christos-savvas.bouganis}@imperial.ac.uk

Abstract—Applying Linear Regression to systems with a

massive amount of observations, a scenario which is becoming

increasingly common in the era of Big Data, poses major

algorithmic and computational challenges. This paper proposes

a novel high-performance FPGA-based architecture for large-

scale Linear Regression problems as well as a heterogeneous

system comprising the custom FPGA architecture, an enhanced

GPU module and a multi-core CPU for addressing the aforemen-

tioned problem. The system adaptively assigns Linear Regression

workloads to the three computing devices to minimise runtime.

The device with the highest performance is chosen based on

an analytical framework, as well as the workload’s size and

structure. A quantitative comparison with existing FPGA, GPU

and multi-core CPU designs yields speed-ups of up to 18.07⇥,

32.67⇥ and 25.84⇥ respectively.

I. INTRODUCTION
Among the primary mathematical tools that are commonly

employed by Big Data analysts, the modelling method of
Linear Regression has a prominent role. In various fields of
Data Science, from compressive sensing to pattern recognition,
linear algebra techniques together with Least Squares methods
constitute the most common tool to address Linear Regression
problems with massive data. With the scale and scope of scien-
tific computing rapidly increasing, the underlying computing
technology that targets such problems is in need for high-
performance solutions in order to cope with modern scientific
problems that come with large data sets.

This paper focuses on the linear Least Squares method of
Linear Regression with emphasis on tackling a wide range
of problem sizes. Depending on the application, the size and
shape of the matrices that represent the Linear Regression
system of equations can vary a lot. As an example, tall-
skinny design matrices commonly appear in scientific fields
that employ general linear models with many samples and
a few tens of parameters, spanning from the Bioinformatics
branches of genetics and genomics analysis [1] to the social
sciences of Econometrics and Mathematical Psychology [2].
On the other end of the spectrum, in cases where the number
of observations is close to the number of parameters, the
system matrices approach a square shape. Since the number of
samples, and consequently the number of rows, can potentially
vary a lot both within and across applications depending on
their nature and the availability of data, a system that aims at
sustaining a high performance across different matrix sizes has
to exploit the heterogeneous set of computing devices that are
present in most modern workstations.

Our approach proposes the complementary deployment of
heterogeneous computing devices for the solution of linear

systems, with sizes spanning from square to tall-skinny, by
means of a Least Squares method based on QR decomposition
algorithms. The proposed framework comprises three QR
algorithms implemented on three computing platforms and
is able to automatically select and assign a Least Squares
workload to the fastest algorithm-platform combination based
on the input matrix dimensions. Our system employs a novel
custom reconfigurable architecture mapped onto an FPGA, a
highly optimised set of GPU kernels and a multi-core CPU
implementation. The QR method is chosen because of its
high numerical stability which is a common requirement for
several types of applications [3]. Different QR algorithms were
selected to be mapped onto the FPGA and the GPU, based on
the unique architectural features of each device as discussed in
the corresponding state-of-the-art works that target QR in the
literature ([4], [5]). The selected algorithms are Tall-Skinny
QR (TSQR) and Communication-Avoiding QR (CAQR) re-
spectively [6]. The CPU employs off-the-shelf optimised linear
algebra software libraries for the QR factorisations and for
the solution of Least Squares systems and also serves as a
supervisor for the rest of the computing devices.

The main contributions of this work are the following:
• A novel parametrisable FPGA-based architecture was

designed, tailored to the solution of tall-skinny linear
systems by means of an enhanced variation of the TSQR
algorithm.

• The state-of-the-art GPU work on QR factorisations was
enhanced by enabling it to solve Least Squares problems.

• An analytical modelling framework was developed for the
performance estimation and optimal configuration of the
proposed FPGA-based architecture.

• Finally, a heterogeneous system is proposed for the high-
performance solution of linear Least Squares systems
across all matrix sizes, from square to tall-skinny, by
allocating work to the highest performing platform.

The paper is organised as follows. Section II discusses the
algorithmic background on the linear Least Squares problem
and the QR factorisation. Section III reviews related work on
FPGAs and GPU. Section IV describes the proposed system
followed by the analysis of the developed modelling frame-
work in Section V. Finally, Section VI presents a comparison
with existing designs and Section VII concludes the paper.

II. BACKGROUND
A. Linear Least Squares Systems

Given a full-rank, Least Squares system with an input
matrix A 2 R(m⇥n), a vector b 2 Rm and m � n, we seek

to find the solution to:

min
x2Rn

kAx� bk22 (1)

A standard method to solve such problems, which is
typically preferred due to its numerical stability, is based on
the QR factorisation [7]. Using the QR decomposition, matrix
A can be decomposed as a product of an (m⇥ n) orthogonal
matrix Q and an (n⇥n) upper triangular matrix R where the
following equation holds:

A = QR (2)

An alternative form of the QR factorisation is the full-
QR decomposition where A = eQeR with eQ 2 R(m⇥m) and
eR 2 R(m⇥n). In this case, the orthogonal, (m ⇥ m) square
matrix eQ can be partitioned as eQ = [Q1

fQ2], where Q1 is
(m⇥ n), and eR = [R>0>]>, where R is (n⇥ n) and upper
triangular. Since multiplication by an orthogonal matrix does
not change the Euclidean norm of a vector, we multiply (1)
by eQ:

k eQ>Ax� eQ>bk
2

2 =

�����


Rx
0

�
�
"

Q>
1 b

fQ2
>
b

#�����

2

2

=
��Rx�Q>

1 b
��2
2
+
���fQ2

>
b
���
2

2

(3)

The second term in this equation is independent of x
and therefore is irrelevant to the minimisation. By focusing
on the first term, since R is full rank by assumption, the
solution of the linear system Rx = Q>

1 b is the solution of
the Least Squares problem, i.e. x = R�1Q>

1 b, which can be
efficiently solved using back-substitution. Moreover, the value
of the objective function, i.e. the norm of the residuals, at the
minimum is:

kfQ2
>
bk2 =

q
kQ>

1 bk2

2 � kbk2
2. (4)

Finally, multiple Least Squares systems can be solved simul-
taneously by using a matrix B in place of b.

B. QR Factorisation
Several algorithms have been proposed for the computation

of QR factorisations of small-scale matrices, with the most
well-known being the Gram-Schmidt orthogonalisation, the
Cholesky QR, the Givens rotations and the Householder trans-
formations [3]. In this work, the Householder transformations
method is used because of its high numerical stability, its use in
the TSQR and CAQR algorithms and its common deployment
in software libraries [6].

In small-scale matrices with an m-to-n ratio of up to a
few tens, Householder QR can be effectively employed. In
large-scale problems, a matrix class of primary interest is the
tall-skinny class, where m � n, with an m-to-n ratio spanning
from some tens to thousands. Such matrices commonly appear
in various applications, such as the computation of likelihoods
that arise in the analysis of massive data in the field of
Bioinformatics, and require high-performance QR factorisa-
tions. Problems of this type can be effectively addressed by
the Tall-Skinny QR (TSQR) and Communication-Avoiding QR
(CAQR) algorithms. A key element of both methods is the
Householder QR algorithm.

C. Householder QR
Using the Householder transformations method, matrix

A can be QR-factored with R = Q
n

Q
n�1...Q1A and

Q = Q�1
1 Q�1

2 ...Q�1
n

, where Q
k

=

✓
I
k�1

0
0
H

k

◆
.

H
k

denotes the Householder matrix which is formed as
H

k

= I
k

� 2 vkv
>
k

kvkk2 , vk 2 R(m�k+1) is the Householder
reflector vector for the kth column and I

k

is the identity
matrix. Algorithm 1 outlines the Householder QR steps. At the
outer loop’s kth iteration, the elements below the diagonal in
column k are zeroed and the rest of the columns, that constitute
the trailing submatrix of the kth iteration, are updated. In
this way, after the completion of the final iteration, the upper
triangular (n⇥n) matrix R has been produced, together with
a matrix V 2 R(m⇥n) that stores all the vk vectors. In
Algorithm 1, the factor �2 1

kvkk2 is stored in the scalar variable
⌧k which is also returned as an element of vector t 2 R(n⇥1)

at the end of Householder QR. Finally, matrix V and vector
t can be used to explicitly reconstruct Q.

Algorithm 1 Householder QR [8]
1: - Input: Matrix A 2 R(m⇥n) -
2: - xk stands for the kth column vector -
3: - xk(i) represents the ith element in vector xk -
4: - dotProduct(x,y, n) represents x

>
y for vectors of length n -

5: for k = 1 to n do

6: - Generate Householder reflector vk -
7: xk A(k : m, k)
8: d1 dotProduct(xk,xk,m� k + 1)
9: d2

p
d1 = kxkk2

10: vk xk
11: vk(1) xk(1) + sign(xk(1))d2
12: d3 dotProduct(vk,vk,m� k + 1)
13: ⌧k � 2

d3
14: - Update columns of A -
15: for j = k to n do

16: yj A(k : m, j)
17: d4 dotProduct(yj ,vk,m� k + 1)
18: d5 ⌧kd4
19: y

0
j d5vk + yj

20: A(j : m, j) y

0
j

21: end for

22: end for

23: return The upper triangular part of A containing the matrix R 2 Rn⇥n,
matrix V 2 R(m⇥n) where individual columns are indexed vk and a
vector t 2 R(n⇥1) containing all the ⌧k values.

D. Tall-Skinny QR (TSQR)
TSQR employs a divide-and-conquer approach to fac-

torise a matrix, while retaining optimality with respect to
the computation-to-communication ratio [6]. Fig. 1 illustrates
how the algorithm consists of a local stage followed by a
merge stage. In the local QR stage, the (m⇥ n) input matrix
A is divided vertically into panels of size (bR ⇥ n), where
bR = 2n to form a binary tree, and the total number of panels
is L = d m

bR
e. Each panel is then factorised using Householder

QR to obtain intermediate upper triangular R matrices. Next,
in the merge stage, the intermediate (n⇥ n) R factors of the
local stage are merged by stacking in pairs, so that L

2 matrices
of size (bR⇥n) (i.e. 2n⇥n) are formed and factorised orderly
as dictated by the tree structure. After the final decomposition
of the merge stage, we end up with a single R matrix and a
sequence of V and t factors which can be used to explicitly
form Q [9].

Fig. 1. Tall-Skinny QR, (a) local stage, (b, c & d) merge stage.

E. Communication-Avoiding QR (CAQR)
The CAQR algorithm was introduced by Demmel et al. [6]

as a generalisation of TSQR for general rectangular matrices.
Instead of a vertical division into panels, the matrix is divided
into a grid of panels, where each panel is factorised using
TSQR. In our system, an enhanced GPU implementation of
CAQR is employed, with more details given in Section IV. A
detailed discussion of the advantages of mapping CAQR onto
a GPU can be found in [5].

F. Reducing QR-based Least Squares Computational Cost
As shown in (3), using the QR factorisation to solve

a linear Least Squares system requires the computation of
Q>

1 b. The typical steps to find x include the QR factorisation
of A (O(2mn2 � 2

3n
3)), a matrix-vector multiplication for

the computation of Q>
1 b (O(2mn)) and finally a back-

substitution to solve Rx = Q>
1 b (O(n2)). Although a brute-

force computation would reconstruct Q1 in an explicit form,
an alternative approach would be to implicitly compute Q>

1 b
by appending b along the columns of A before performing the
QR factorisation [7]. This result is particularly useful for the
case of Householder QR, where Q1 is not explicitly formed
and hence additional computations would be required to do so.
After Q>

1 b has been computed, the Least Squares system can
be solved by performing back-substitution on Rx = Q>

1 b.
Moreover, in the case where the system’s residuals or their
norm is required, the same approach can be followed, as
implied by the right-hand side of (4). In particular, after
the computation of Q>

1 b, the norm of the residuals requires
two additional dot products followed by a subtraction and
a square root operation. The above technique is used in
combination with the QR algorithms mentioned above, as it
will be described in Section IV.

III. RELATED WORK
The emerging need for high-performance systems that

handle Linear Regression tasks has recently led to novel
FPGA and GPU designs. In [10], Abba et al. mapped the
Levenber-Marquardt algorithm onto an FPGA-based architec-
ture, optimised to solve non-linear Least Squares problems,
instead of linear ones as in our work. In [11], an FPGA-
based Cholesky decomposition is employed instead of QR. The
focus is on the solution of triangular linear equations, without
addressing non-square tall-skinny matrices, claiming a speed-
up of 4.8⇥ in single-precision and 4.3⇥ in double-precision
against a dual core CPU implementation. Despite being less

Fig. 2. Parallel architecture for tall-skinny Linear Systems

computationally complex than QR, the Cholesky decomposi-
tion is a numerically unstable method [12], an issue which
is not addressed in [11]. Since several applications cannot
tolerate numerical instability, our proposed system can tackle
a wider range of problems. In the context of large-scale linear
Least Squares problems, Anderson et al. [5] presented a GPU
implementation of the CAQR algorithm which achieves the
state-of-the-art GPU performance for very tall-skinny matrices.
In our system, we use a set of GPU kernels based on this work
with extensions so that Q>

1 b is computed implicitly during
the QR decomposition. Finally, Rafique et al. [4] proposed an
FPGA-based TSQR accelerator targeting tall-skinny matrices,
which was used as the base of our architecture.

IV. HETEROGENEOUS COMPUTING SYSTEM
A. FPGA Custom Architecture

Fig. 2 shows our proposed custom architecture. In our
implementation, we use double-precision floating-point repre-
sentation in order to account for the typical precision require-
ments of the data analysis community. The dataflow of the
architecture is partially based upon the TSQR core proposed by
Rafique et al. [4], with substantial enhancements that extend its
functionality from performing QR decompositions to solving
linear Least Squares systems, enable runtime flexibility with
respect to the input matrix size along both dimensions and
increase the maximum number of columns from 51 to 275 for
the same FPGA device. The main strategy of the architecture
can be identified in the exploitation of both the coarse-
grained parallelism of TSQR and the fine-grained parallelism
of Householder QR. Its main computation is the pipelined
execution of Householder QR on the current panel, with the
Double Buffered I/O subsystem scheduling the appropriate
panel based on the TSQR tree structure.

1) Exploiting TSQR Parallelism: In TSQR, the factorisa-
tions of independent panels in the local stage and throughout
the merge stage can be executed in parallel as exemplified by
the tree structure in Fig. 1. The I/O subsystem includes three
buffers as shown in Fig. 2. Initially, the panels of the input
matrix are stored in the off-chip memory. The top two buffers
constitute the Double Buffering mechanism while the third
buffer serves as a way to execute all the TSQR merge stages
on-chip and keep the off-chip memory transfers to a minimum.
This is achieved by storing the intermediate R results after
every panel factorisation in the third buffer, which, after being
stacked in pairs as dictated by TSQR, are further factorised.

A detailed treatment of the inherent parallelism of House-
holder QR can be found in [6]. Since a single panel would
keep the pipelined arithmetic units underutilised, a set of

independent panels is fed into the architecture. The number
of panels in the set is denoted by P and is one of the runtime
configurable parameters of the core, in contrast to [4] where
it is fixed after compilation. Pipelining is done by executing
the first Householder QR outer loop iteration for P panels one
after the other, followed by the second outer loop iteration for
the same P panels, and so on until the QR factorisations are
finished for this set of panels. Then, the next set of P panels
is processed in the same manner.

2) Introducing Flexibility: With reference to Fig. 2, the
vector arithmetic units (i.e. the Dot Product reduction-tree
unit and the Multiplier and Adder arrays) must have a fixed
number of inputs, denoted by M , which meets the resource
constraints of the target FPGA and in particular the available
DSP blocks. As an example, M determines the number of
multipliers in the first stage of the Dot Product unit. At the
kth iteration of Householder QR, P vectors of size (bR�k+1)
are fetched from one of the three buffers and fed into the Dot
Product unit in a pipelined manner. Lines 7 and 8 of Algorithm
1 illustrate this process for a single panel where vector xk

is first fetched and then fed into the Dot Product unit. The
alteration between the three buffers takes place as follows.
One of the buffers from the Double Buffering mechanism
is selected alternatively followed by the third buffer, and
this process is repeated until the completion of the TSQR
algorithm. In [4], when a column vector has to be fed into the
Dot Product unit, if bR is greater than M , the design needs to
be recompiled and the FPGA reconfigured with M set equal
to bR. Moreover, if bR exceeds the maximum value of M as
determined by the available DSP blocks, then the input matrix
cannot be factorised and hence the architecture is bounded by
the DSP blocks. By employing a vector-partitioning strategy,
our approach decouples M from the vector size, bR, and
consequently from the size of the input matrix, since bR is
equal to double the total number of columns, n. In this way,
our architecture can tackle problems with varying bR and n
without reconfiguration and independently of the number of
available DSP blocks, in contrast to [4].

Fig. 3. On-chip Buffer Organisation for Vector Partitioning

Our mechanism implements the partitioning by means of
appropriate memory organisation and buffer addressing. Each
panel consists of n column vectors of length equal to bR. Each
column vector is split into

⌃
bR
M

⌥
slices of length equal to M .

As depicted in Fig. 3, the RAM blocks are organised so that
they provide a bandwidth of M words per cycle while having
the required depth to accommodate P panels. In this way, if
bR > M ,

⌃
bR
M

⌥
addresses that correspond to slices of the same

column vector are read and fed into the Dot Product unit in
consecutive cycles. Finally, at the output of the Dot Product
unit, an accumulator is employed to sum together the partial
results for each column vector. As a result, this technique

offers a twofold gain. Firstly, it provides runtime flexibility
with respect to the matrix number of columns and decouples
it from the available DSPs. In contrast to [4], this allows the
architecture to process matrices with more columns, bounded
by on-chip memory capacity rather than DSPs. Secondly, in
terms of hardware cost, it removes the need for massive
partitioning multiplexers which would lead to an excessive
LUTs utilisation, by means of a more efficient on-chip memory
utilisation.

3) Solving Linear Least Squares Systems: As discussed in
Section II, in the context of linear Least Squares systems,
TSQR can be employed to compute the product Q>

1 b, or
Q>

1 B in the general case of multiple systems. This is achieved
by appending matrix B along the columns of the (m⇥n) input
matrix A and executing the outer loop of the Householder
QR n times while the inner loop is executed n + nB times,
where nB is the number of columns of B. In this way,
matrix B is updated in every outer loop iteration and after
the final iteration, it contains the product Q>

1 B. The novel
hardware design proposed here follows the aforementioned
mathematical approach by partitioning and storing matrix B
along the columns of the panels of A. In terms of hardware
cost, the resource implications are minimal since in most real-
life problems n � nB and hence there is no substantial
increase on the memory requirements.

B. GPU
The GPU component of our system consists of an enhanced

version of the design proposed by Anderson et al. [5]. The
original design employs the CAQR algorithm for the QR
factorisation of tall-skinny matrices and manages to outperform
competing implementations by up to 13⇥. Our enhancement
employs the method analysed in Section II for the calculation
of Q>

1 B by means of a redesigned kernel, which follows the
modified Householder QR and appends matrix B along the
columns of the input matrix. In this way, in the context of linear
Least Squares problems, the computation-to-communication
ratio is increased and our GPU module achieves a competitive
performance which at points outperforms our custom architec-
ture.

C. CPU
The CPU serves primarily as a supervisor for the other

devices, but also as a complementary computing unit. Software
running in the CPU is responsible for assigning the Least
Squares workload to the computing device with the highest
performance based on the matrix shape and size. At a system
level, we exploit the fact that in specific matrix-size ranges
either the FPGA-based custom architecture or the GPU module
dominates in terms of performance and enable the CPU
to select the highest performer for the target matrix. The
FPGA performance is estimated using the developed modelling
framework while the GPU module is subject to profiling as
a pre-processing step. In the case of very small matrices
where the overhead of data transferring is not amortised by
the performance of either device, the Least Squares problem
is solved by the CPU using parallel linear algebra libraries,
such as OpenBLAS. Finally, for the solution of the Least
Squares problem, the CPU executes the back-substitution as
soon as Q>

1 B becomes available from the other platforms. If
the norm of the residuals is required, the CPU executes two
additional dot products followed by a subtraction and a square
root operation as dictated by (4).

V. MODELLING FRAMEWORK
To quantitatively determine the performance, the FPGA

resource utilisation and the optimal configuration of the custom
architecture, an analytical modelling framework was devel-
oped. The configurable architectural parameters comprise the
size of the vector arithmetic units, M , and the number of
panels, P , that will be active in parallel in the pipeline. All
models have been verified empirically.

A. Performance Model
The primary performance metrics of interest are the exe-

cution time and throughput of our core. The execution time
measurement begins with the input matrix already transferred
to the FPGA’s off-chip memory and reaches the point where
Q>

1 B is available on the CPU side. As shown in (5), the
latency of Householder QR for a set of P panels, Thqr, is a
function of parameters M and P and the number of columns of
A and B, i.e. n and nB respectively. Thqr is broken down into
two components: the critical path and the additional delays.

Thqr = n⇥ Tcritical path(P,M) + Tdelays(P,M, n, nB) (5)

where n is also the number of Householder QR outer loop
iterations. The critical path models the aggregate latency of
the floating-point units along the critical path for all P panels
in each outer loop iteration as given by (6).

Tcritical path = Tdot + Taccum + Tsqrt + Tadd

+ Tdot + Taccum + Tdiv + Tmult

+ Tmult + Tadd + TFIFOs

(6)

with

Tdot = Tmult + Tadd ⇥ dlog2Me

Taccum =

✓
9 +

⇠
bR
M

⇡◆
1(bR > M) (Flopoco operator)

TFIFOs = (P � 1)⇥
⇠
bR
M

⇡
+ 9 (implementation dependent)

where 1(bR > M) is 1 if bR > M and 0 otherwise.
The exact values depend on the latencies of double-precision
floating-point operators and in our case yield Tcritical path =
227 + (P � 1)⇥

⌃
bR
M

⌥
+ 24⇥ dlog2Me, based on the Xilinx

Coregen library and the Flopoco accumulator latency [13].
The additional delays capture the on-chip buffer write-back
of the results for all outer loop iterations and are measured by
profiling. Finally, the total number of local Householder QRs
in all the TSQR stages is calculated based on the tree structure
of Fig. 1 as shown in (7), with L = d m

bR
e, while the overall

TSQR execution time, which is also the execution time for the
computation of Q>

1 B, is given by (8).

No. of Local QRs =
dlog2LeX

i=0

⇠
L

2iP

⇡
(7)

TTSQR = Thqr ⇥ No. of Local QRs (8)

B. Resource Model
From a resource perspective, the main design constraints

are the number of DSPs and on-chip RAM blocks of the
target FPGA. Assuming that all floating-point multipliers are
implemented with DSP slices, the value of M is limited by

the number of DSPs in the target FPGA. The total number of
DSPs used by the core are given by constraint (9).

Dmult ⇥ (2M + 1) +Dctrl  Dfpga (9)

where Dfpga is the number of available DSPs, Dmult are the
DSPs per multiplier and Dctrl is the implementation-dependent
number of DSPs used by the control logic (in our case, double-
precision is used, where Dmult = 9 based on the Xilinx
Coregen library and Dctrl = 16).

In terms of on-chip RAM, as shown in Fig. 2, the core
has three buffers and two vector FIFOs of equal size with a
capacity requirement as given by (10).

5⇥ P ⇥ (bR ⇥ n0)⇥WL  Bfpga (10)

where WL is the wordlength, Bfpga is the available on-chip
Block RAM and n0 = n+ nB is the number of columns in a
panel after appending matrix B.

C. Configuration Optimisation Framework
The developed optimisation framework aims at determining

the values of the configurable parameters, M and P , that
achieve the lowest execution time for a given matrix size and
available hardware resources. Starting with M , we pose the
following optimisation problem:

min
M2Z+

|M � bR|, s.t. M  Dfpga �Dmult �Dctrl

2⇥Dmult
(11)

Based on this formulation, the optimal value of M is the
one that minimises partitioning and is given by the positive
integer that lies closest to bR while it satisfies the DSP con-
straint (9). To comprehend the reasoning behind minimising
partitioning, it is essential to consider the effect of the selection
of M on the performance for a given FPGA device. If the size
of each column vector, bR, is less than M , the vector is zero-
padded to match M prior to entering a vector arithmetic unit
and the tree-reduction Dot Product unit will contain redundant
addition stages, and hence latency cycles. On the other hand,
in the case where bR is much greater than M , the partitioning
of each vector will add substantial overhead to the overall
execution time because of the required accumulation of the
partial results at the output of the Dot Product unit.

Similarly to the parameter M and after it has been set,
the number of panels P is determined through analysis. The
critical factors for the selection of P are the architecture’s
pipeline depth, the available amount of on-chip RAM and the
total number of Householder QRs for the TSQR algorithm of
the input matrix. The main pipeline of the core consists of the
Dot Product unit and the accumulator followed by the Square
Root unit. At this point, the results of the Square Root unit
are fed back to the Dot Product unit for the completion of the
current outer loop iteration of the Householder QR algorithm
and, therefore, no more new vectors need to be fetched from
the buffers in order to keep the pipeline utilised. The pipeline
depth is given by (12), where Taccum is included only when
bR > M . Finally, the maximum number of panels that would
yield full utilisation of the pipeline is given by (13).

Partition Level =

⇠
bR
M

⇡

Pipeline Depth = Tdot + Taccum1(bR > M)

+ Tsqrt

(12)

Ppipeline max =

�
Pipeline Depth

Partition Level

⌫
(13)

where 1(bR > M) is 1 if bR > M and 0 otherwise.
Apart from the pipeline depth, P is also constrained by the

size of the available on-chip memory. Depending on the level
of partitioning, the number of addresses per panel is:

Addresses per Panel = Partition Level ⇥ n0 (14)

where n0 = n+nB is the number of columns in a panel after
appending matrix B. The maximum feasible value for P is
given by (16), where the maximum addresses per buffer can
be found by (15) with each address accommodating M words.

Addresses per buffer =
Bfpga

5⇥M ⇥WL
(15)

Pbram max =

�
Addresses per buffer

Addresses per Panel

⌫
(16)

where the factor of 5 in the denominator of (15) comes from
the core’s three buffers and two vector FIFOs of equal size,
for a total of five memory structures, as shown in Fig. 2 and
captured by constraint (10).

As a last step, the optimal number of panels, Popt, that
minimises the overall TSQR latency is found as in (17).

Popt = argmin
P

TTSQR(P), s.t. P 2 [1, Ppipeline max] (17)

where TTSQR is a locally convex function of P , as given
by (8). The proof of TTSQR(P)’s local convexity has been
omitted due to space constraints. Finally, if Popt requires
more than the FPGA’s on-chip Block RAM, the final value
is saturated to Pbram max as in (18).

P = min(Popt, Pbram max) (18)

D. I/O Requirements
In a typical operation of our system, the FPGA core would

factorise a set of P panels from the Double Buffer followed
by P panels from the R buffer, before a new set of P panels
has to be fetched from the off-chip memory. Therefore, the
required I/O bandwidth can be estimated as in (19).

I/O Bandwidth =
P ⇥ (bR ⇥ n0)⇥WL

2⇥ Thqr
bits/cycle (19)

where the numerator is the product between the total number of
words for P panels of size (bR⇥n0) and the wordlength in bits,
denoted by WL. The denominator is the latency of factorising
two sets of P panels, which corresponds to the available time
for loading a new set of panels. Meeting the I/O bandwidth
requirements allows the off-chip memory latency to be hidden
and the FPGA core to be kept busy at all times without stalling.

VI. EXPERIMENTAL EVALUATION
A. Experimental Setup

The custom architecture was implemented using VHDL
and the Xilinx ISE Design Suite (v14.5) was used. The target
platform was the Xilinx Virtex-6 SX475T FPGA with an
achieved operating frequency of 200 MHz and a PCIe interface
to the CPU. In all the experiments, an NVIDIA Tesla K20 GPU
and an Intel CPU i7-4770 (@3.40 GHz) were used, with the

latter having four cores with two hardware threads per core
and with 16 GB RAM and 8 MB cache.

To compare the proposed heterogeneous system with exist-
ing works, we evaluated its performance in typical linear Least
Squares scenarios. The workload of our benchmarks includes
an input system of the form kAx� bk22, where A 2 R(m⇥n),
b 2 Rm and m � n, and requires as output the value of x
that minimises it. Since the aim of our design is to sustain
high performance for any matrix size, the performance was
measured as a function of m and n, and includes the data
transfer times between the CPU and the computing devices.
For each matrix size, our heterogeneous system selects the
computing device with the highest performance based on the
target CPU and GPU profiling information and our FPGA
performance models. The existing works include OpenBLAS
and CULA routines for the solution of linear systems targeting
multi-core CPUs and GPUs respectively as well as the FPGA
TSQR core with the highest reported performance [4] mapped
onto the same device as the one used here together with
OpenBLAS routines for the remainder of the computations
that are required for the solution of the Least Squares system.
The performance results were obtained as averages over several
runs of the experimental workloads.

Fig. 4. Execution Time (TTSQR) vs. P (m = 6400, n0 = 51, M = 100)

B. FPGA Solver Optimal Configuration Paradigm
In all cases, parameters M and P in the FPGA design are

set as determined by the presented optimisation framework. An
instance of the optimisation procedure is shown in Fig. 4. For
an input matrix A 2 R(6400⇥50) and b 2 R6400, each panel has
a size of (bR⇥n0) with n0 = n+nB = 50+1 and bR = 2n =
100. The target Virtex-6 SX475T FPGA includes 2,016 DSP
blocks which leads to the constraint M  110. In this scenario,
given the input matrix size and the target FPGA DSPs, we
are able to avoid vector partitioning altogether, because bR is
lower than the maximum permitted value of M . Therefore,
with reference to (11), our optimisation framework sets M to
be equal to bR and hence M is assigned a value of 100.

In Fig. 4, Ppipeline max can be seen to be equal to
Pipeline Depth with a value of 156. Moreover, Pbram max

is shown to have a value of 30 as determined by the amount of
on-chip BRAM of the target device. The asymptotic increase

200 400 800 1600 3200 6400 12000 24000 48000 89000
0.25

0.5

1

2

5

10

20

40

70

Virtex−6 SX475T (M = 110)

Latency(sec) vs. m (n = 51)

No. of Rows (m)

G
F

L
O

P
S

FPGA Custom Architecture with OpenBLAS

GPU with OpenBLAS

OpenBLAS

Fig. 5. Individual Solvers’ Performance Scaling with respect to m (n0 = 51,
nB = 1)

4 8 16 32 40 51 80 128 256

0.25

0.5

1

2

5

10

20

40

Virtex−6 SX475T (M = 110)

Latency(sec) vs. n (m = 6400)

No. of Columns (n)

G
F

L
O

P
S

FPGA Custom Architecture with OpenBLAS

GPU with OpenBLAS

OpenBLAS

Fig. 6. Individual Solvers’ Performance Scaling with respect to n (m =
6400, nB = 1)

of the execution time with respect to P comes as a result of
the two components of (8). On the one hand, Thqr, which
is the latency of Householder QR for a set of P panels,
increases linearly with P due to the increased write-back
overhead. On the other hand, the overall number of local QRs
in the TSQR algorithm as given by (7) decreases exponentially
with P and converges to a constant value, as dictated by
the inter-stage dependencies of the TSQR tree, similarly to
the one shown in Fig. 1. Moreover, because of the ceiling
operator of (7), several consecutive values of P map to the
same number of local QRs which leads to TTSQR having
several local minima. Eventually, after the number of local QRs
reaches its asymptotic value, the Thqr component dominates
and therefore TTSQR increases linearly with P . Since our
objective is to minimise the overall execution time, Popt is
set to the minimum value of TTSQR that lies on the left
of Pbram max. In the example of Fig. 4, Popt is 16 with a
required I/O bandwidth of 145 MB/s and yields speed-ups with
respect to Ppipeline max and Pbram max of 3.74⇥ and 1.35⇥
respectively.

Fig. 7. Performance Scaling with respect to m (n0 = 51, nB = 1)

!"#$%"& #"&

Fig. 8. Performance Scaling with respect to n (m = 6400, nB = 1)

C. Heterogeneous Solver against Individual Devices
This section explores the performance gains of using the

proposed heterogeneous system over using its individual de-
vices for the solution of linear Least Squares systems. This
is investigated by comparing the performance of the highest
performer against the rest of the devices. Fig. 5 and 6 show
the performance scaling of the individual devices that are part
of the proposed heterogeneous system. With respect to Fig.
5 for a relatively small number of columns (e.g. n0 = 51) a
pure software Least Squares solver targeting a multi-core CPU
does not provide a competitive high-performance solution. For
the particular Least Squares workload size, in the interval
m 2 [200, 12000) the FPGA solver with OpenBLAS reaches
a speed-up in the range 1.04⇥ - 4.67⇥ (2.50⇥ geometric
mean) over GPU with OpenBLAS and 4.09⇥ - 13.54⇥ (8.16⇥
geometric mean) over standalone OpenBLAS. In the interval
m 2 (12000, 8900], GPU with OpenBLAS achieves a per-
formance improvement of 1.20⇥ - 2.74⇥ (1.85⇥ geometric
mean) and 2.41⇥ - 25.84⇥ (5.69⇥ geometric mean) over
the FPGA architecture with OpenBLAS and the standalone
OpenBLAS respectively.

With respect to the performance scaling with the number
of columns as presented in Fig. 6, in the range n 2 [8, 80),
the FPGA solver overperforms the GPU and the pure soft-
ware modules by 1.11⇥ - 3.28⇥ (1.62⇥ geometric mean)
and 1.13 - 2.24⇥ (1.42⇥ geometric mean) respectively. In
the range n 2 [80, 256], the GPU implementation reaches
speed-ups of 1.16⇥ - 1.89⇥ (1.45⇥ geometric mean) and
2.61⇥ - 6.42⇥ (3.78⇥ geometric mean) over the FPGA solver
and OpenBLAS respectively. Finally, OpenBLAS manages to
overperform both the FPGA and the GPU solvers in the range
n 2 [4, 8) by a factor of 1.04⇥ and 3.41⇥ respectively.

D. Evaluation against Existing Works
Fig. 7 and 8 show the performance comparison results

against existing works, indicating the switching points between
the FPGA core, the GPU and the CPU implementations. In the
first case, the performance scaling with respect to the number
of rows of the input Least Squares system is shown. The
number of columns, n, is set to 51, which is the maximum
number of columns of [4] and allows for a direct comparison
with this work. The second case presents the performance
scaling with respect to the number of columns for 6400 rows
which corresponds to a medium-high Least Squares system
size.

Compared to OpenBLAS and CULA, we observe a speed-
up in the range 1.13⇥ - 25.84⇥ (4.70⇥ geometric mean)
and 4.10⇥ - 32.67⇥ (13.30⇥ geometric mean) respectively.
Comparison with the best FPGA work yields a speed-up in
the range 1.63⇥ - 18.07⇥ (4.81⇥ geometric mean) with the
maximum improvement observed as the matrices become more
tall-skinny. The speed-up gains come mainly from the fact that
the proposed system employs our mechanism to compute Q>

1 b
without forming Q1 explicitly and, hence, only Q>

1 b and R
are sent back to the CPU for the back-substitution. In contrast,
[4] has to transfer back R together with all the intermediate
V matrices and t vectors and then use software to reconstruct
Q1, compute Q>

1 b and finally execute the back-substitution,
which adds substantial overhead. In the case of multiple Least
Squares systems, where a matrix B is used in place of b, the
same performance pattern is observed.

As it can be seen in Fig. 8, [4] can process matrices
with a maximum of 51 columns before reaching the device’s
DSP limit, and FPGA reconfiguration is required whenever
the number of columns changes. In contrast to that, the
proposed heterogeneous system can successfully handle any
matrix size, until all the available memory is exhausted. In
particular, for the FPGA module, the limiting factor is no
longer the DSPs, but the Block RAMs. Our custom architecture
is able to process matrices of different sizes without FPGA
reconfiguration, with a maximum of 275 columns for the target
device, reaching a 84.23% on-chip memory utilisation with
potential for bigger matrices given a higher on-chip memory
capacity. Finally, for the target FPGA, the maximum value of
M is 110 reaching a DSP utilisation of 99.45%.

VII. CONCLUSION
This paper presents a heterogeneous solver for linear Least

Squares systems as a step towards the high-performance so-
lution of modern large-scale Linear Regression problems. The
proposed system employs a novel FPGA-based custom archi-
tecture, a set of GPU kernels and parallel software libraries
in a complementary way. Moreover, an analytical modelling

framework is presented for the optimal configuration of the
custom architecture and the estimation of its performance and
resource utilisation. Experimental evaluation shows that by
switching between the different computing platforms in an
adaptive way based on the input matrix characteristics, it is
possible to sustain a high performance across matrix sizes. As
a result, in the common occurrence of massive data sets in
various scientific branches, the runtime of computing either
the residuals or the actual solution of Least Squares problems
can be reduced by a factor of up to 18.07⇥. Potential future
work includes an exploration of how we can maximize the
utilisation of the FPGA and GPU components of the system
by processing multiple Least Squares problems in parallel on
the same device and also across devices. Finally, the proposed
heterogeneous system could be extended by investigating the
use of additional QR-based methods that are particularly suit-
able for specific Least Squares systems classes, such as square
systems, followed by their highly optimised mapping onto
the appropriate computing platform. Their potential integration
into the system could help us tackle a wider range of real large-
scale applications.

REFERENCES
[1] L. Bottolo and S. Richardson, “Evolutionary Stochastic Search for

Bayesian Model Exploration,” Bayesian Analysis, vol. 5, no. 3, pp. 583–
618, 09 2010.

[2] W. Wiedermann, M. Hagmann, and A. von Eye, “Significance
tests to determine the direction of effects in linear regression
models,” British Journal of Mathematical and Statistical Psychology,
vol. 68, no. 1, pp. 116–141, 2015. [Online]. Available:
http://dx.doi.org/10.1111/bmsp.12037

[3] J. W. Demmel, Applied Numerical Linear Algebra. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 1997.

[4] A. Rafique, N. Kapre, and G. Constantinides, “Enhancing Performance
of Tall-Skinny QR Factorization using FPGAs,” in Field Programmable
Logic and Applications (FPL), 2012 22nd International Conference on,
Aug 2012, pp. 443–450.

[5] M. Anderson, G. Ballard, J. Demmel, and K. Keutzer, “Communication-
Avoiding QR Decomposition for GPUs,” in Parallel Distributed Pro-
cessing Symposium (IPDPS), 2011 IEEE International, May 2011, pp.
48–58.

[6] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, “Communication-
optimal Parallel and Sequential QR and LU Factorizations,” SIAM J.
Sci. Comput., vol. 34, no. 1, pp. 206–239, Feb. 2012.

[7] P. G. Constantine and D. F. Gleich, “Tall and Skinny QR Factorizations
in MapReduce Architectures,” in Proceedings of the Second Interna-
tional Workshop on MapReduce and Its Applications, ser. MapReduce
’11. New York, NY, USA: ACM, 2011, pp. 43–50.

[8] W. Gander, “Algorithms for the QR-Decomposition,” Tech. Rep., 1980.
[9] G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H. D. Nguyen, and

E. Solomonik, “Reconstructing Householder Vectors from Tall-Skinny
QR,” EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2013-175, Oct 2013.

[10] A. Abba, F. Caponio, A. Geraci, and G. Ripamonti, “Implementation of
High Efficiency Non-Linear Least-Squares in FPGA Devices for Dig-
ital Spectroscopy,” in Nuclear Science Symposium Conference Record
(NSS/MIC), 2010 IEEE, Oct 2010, pp. 1371–1376.

[11] D. Yang, G. Peterson, H. Li, and J. Sun, “An FPGA Implementation
for Solving Least Square Problem,” in Field Programmable Custom
Computing Machines, 2009. FCCM ’09. 17th IEEE Symposium on,
April 2009, pp. 303–306.

[12] A. Björck, Numerical methods for least squares problems. SIAM,
1996.

[13] F. de Dinechin and B. Pasca, “Custom Arithmetic Datapath Design
for FPGAs using the FloPoCo Core Generator,” Design & Test
of Computers, IEEE, vol. PP, no. 99, p. 1. [Online]. Available:
http://dx.doi.org/10.1109/mdt.2011.44

