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ABSTRACT
On-device machine learning is becoming a reality thanks to
the availability of powerful hardware and model compres-
sion techniques. Typically, these models are pretrained on
large GPU clusters and have enough parameters to gener-
alise across a wide variety of inputs. In this work, we observe
that a much smaller, personalised model can be employed
to fit a specific scenario, resulting in both higher accuracy
and faster execution. Nevertheless, on-device training is ex-
tremely challenging, imposing excessive computational and
memory requirements even for flagship smartphones. At the
same time, on-device data availability might be limited and
samples are most frequently unlabelled.

To this end, we introduce PersEPhonEE, a framework that
attaches early exits on the model and personalises them
on-device. These allow the model to progressively bypass
a larger part of the computation as more personalised data
become available. Moreover, we introduce an efficient on-
device algorithm that trains the early exits in a semi-supervised
manner at a fraction of the whole network’s personalisation
time. Results show that PersEPhonEE boosts accuracy by
up to 15.9% while dropping the training cost by up to 2.2×
and inference latency by 2.2-3.2× on average for the same
accuracy, depending on the availability of labels on-device.
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Figure 1: Overview of early-exit personalisation.

1 INTRODUCTION
The recent progress of deep learning has enabled the develop-
ment and ubiquitous deployment of numerous novel systems
and apps. At the same time, mobile chipsets are increasingly
equipped with dedicated processing units (e.g. NPUs) for
efficient execution of DNNs [1, 11]. As such, on-device exe-
cution is becoming an emerging approach for meeting the
latency, energy and privacy requirements of such systems.
Typically, deep models are trained centrally on standard

datasets with the aim to generalise across samples and users.
For instance, facial landmark detectors are trained to cap-
ture various demographics, speech recognisers to accommo-
date different accents and voices, and home-assistant robots
to work reliably across diverse household configurations.
However, with data not being independent and identically
distributed (IID) across devices in reality, the global model re-
sults in varying accuracy across the samples encountered in
the wild, often failing catastrophically on unexpected inputs.
Conventional solutions typically rely on cloud- or edge-

based setups to perform model personalisation. Under this
scheme, each device transmits the user-specific data to a
remote server, where personalisation takes place through
additional training rounds. Although this approach takes ad-
vantage of the resource-rich server, it comes with significant
overheads. First, the exposure of both the user data and the re-
sulting personalised model to the remote side raises privacy
concerns [16, 18, 21, 23]. Second, on the service-provider
side, using cloud/edge infrastructure comes with significant
operating costs [24], due to the high demand of DNN training
workloads for compute, memory and bandwidth resources.
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A promising approach to remedy this situation is on-device
model personalisation, aiming to tailor the DNN to each in-
dividual user or context. Despite the algorithmic progress,
there are still important limitations. First, the excessive re-
source demands of DNN training and the device hardware
heterogeneity makes on-device personalisation challenging.
Second, user data are frequently unlabelled, making super-
vised learning impossible. Third, personalisation can result in
undetected catastrophic forgetting for non-frequent inputs.

To address these limitations, we propose PersEPhonEE, a
novel framework that converts a pretrained CNN into amulti-
exit network and personalises its early exits to the specific
user’s data distribution (Fig. 1). Personalisation takes place
purely on-device and aims at producing classifiers along the
depth of the network that are specialised for the user’s data.
At inference time, the network can exit early if it is confident
on its early output, or progressively refine the quality of the
result. Training can take place with or without ground-truth
labels in a self-supervised manner, using the output of the
network’s last exit. By only personalising the early classifiers
and keeping the backbone network frozen, we render the
training process lightweight enough to take place overnight,
while the device is plugged in. Finally, as the backbone is
not altered, we can assess the quality of each personalised
classifier and capture out-of-distribution samples at run time.

We evaluate our system across two networks and datasets.
Results indicate that we can achieve up to 3.2× inference
throughput gain, 3.1× fewer FLOPs and 25.1× fewer param-
eters while maintaining similar accuracy. Moreover, training
an exit can be up to 23× faster than the whole network.

2 BACKGROUND AND RELATEDWORK
Recently, an increasing body of work has focused on the
design of early-exit networks, i.e. DNNs with intermediate
classifiers along their depth that provide varying accuracy-
latency trade-offs. The goal of this class of models is to of-
fer adaptive accuracy-latency behaviour, either through an
input-dependent execution with each sample stopping at the
appropriate exit based on its difficulty or by extracting a sub-
network. Existing efforts span from hand-crafted early-exit
models [10, 28] to model-agnostic [13, 25] and deployment-
optimised frameworks [14, 15]. Focusing on transfer learning,
REDA [12] employs self-distillation to efficiently adapt ear-
lier exits to tasks from different domains. While this line of
work focuses on speeding up inference by training a single
global model offline, PersEPhonEE attempts to personalise
exits in order to build a user-specific network that can save
both computation and energy. Tangentially, [26] specialises
CNNs by dynamically dropping layers based on offline class
clustering. Nevertheless, to repurpose it for personalisation,
the number of users and the most common classes for each
user need to be known a priori, leading to poor scalability.
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Figure 2: PersEPhonEE’s system architecture.

On the personalisation front, several methods have been
proposed, leveraging user data to specialise generic pre-
trained models [4, 20]. Currently, this space is dominated by
meta-learning approaches [9]. Such algorithms train a DNN
so that it ends up with a good parameter initialisation that is
amenable to rapid specialisation without requiring an exces-
sive amount of data. Our approach, instead, uses personali-
sation as a way of progressively accelerating both on-device
inference and training as more user-specific data become
available. Orthogonal meta-learning techniques can be com-
bined with PersEPhonEE to further improve performance.
Resembling PersEPhonEE’s self-supervised technique, an-
other line of work employs online model distillation to obtain
a user-adapted lightweight model [19]. The proposed two-
model method is tailored for videos and requires the separate
and frequent execution of both a costly teacher model and a
lightweight student. Although this is suitable for high-end
platforms, it is prohibitive for mobile devices.

3 SYSTEM ARCHITECTURE
PersEPhonEE aims at creating an efficient personalisedmulti-
exit model for each user. The processing flow (Fig. 2) starts
by attaching𝑀 intermediate classifiers, or early exits, along
the depth of a given CNN. Next, the Training Engine trains
both the early exits and the backbone network if it has not
been pretrained. Upon deployment to a user’s device, the
Profiler collects statistics on the on-device execution. The
Orchestrator examines the Profiler’s accumulated data and
dictates when an on-device personalisation round will be
launched. After a personalisation round, the Orchestrator
considers the accuracy-latency characteristics of each early
exit and customises the execution by configuring the Infer-
ence Engine with the selected exits and the early-exit policy
to be used when processing new incoming data.
3.1 Training Engine
The Training Engine comprises a dual structure: i) an offline
component (Sections 3.1.1 & 3.1.2) that derives a global multi-
exit variant given a CNN and trains it using a generic dataset



and ii) an on-device component (Section 3.1.3) that adapts
the global multi-exit model to work well for the current user.
3.1.1 Deriving amulti-exit model. Given a CNNmodel, PersE-
PhonEE converts it into a multi-exit network by attaching a
number of early exits along its path. For the exit architecture,
we utilise a uniform design for all early exits, adopting the in-
termediate classifier structure of MSDNet [10]. Furthermore,
we follow a platform-agnostic approach with equidistant
placement of the𝑀 classifiers along the depth of the back-
bone network in terms of FLOP count, i.e. at 𝑖/(𝑀 + 1)-th,
where 𝑖 ∈ [1, 𝑀] is the ordinal of the classifier.
3.1.2 Training the global model. The multi-exit global model
is then trained offline by utilising a generic training set for
the target task. If the supplied backbone network has been
pretrained, we apply early-exit-only training, thus freezing
the backbone’s parameters and training only the intermedi-
ate classifiers’ layers [15]. If the supplied CNN is not trained,
we jointly train the backbone and intermediate exits from
scratch using the cost function introduced in [13]. In terms of
overhead, training from scratch the multi-exit model spans
between 1.2×-2.5× the time of the backbone network, de-
pending on the architecture and number of exits, with higher
overhead when 𝐹𝐿𝑂𝑃𝑠early exit

𝐹𝐿𝑂𝑃𝑠backbone
is larger. Nonetheless, as training

takes place once for all users upfront, it is rapidly amortised
by the runtime gains of confident samples from early exit-
ing. The resulting model is the trained global model, serving
as initialisation for client devices to personalise. The global
model is then deployed to the mobile and embedded devices.
3.1.3 On-device early-exit personalisation. On-device per-
sonalisation is hindered by the limited compute, storage
and memory capabilities of mobile devices. Moreover, de-
vice diversity calls for more elastic models that can adapt
computation and energy usage. At the same time, obtaining
ground-truth labels for user data is often impractical. Finally,
prolonged fine-tuning can lead to catastrophic forgetting.
To overcome these limitations, PersEPhonEE introduces

personalised multi-exit networks and an efficient on-device
training scheme. We adopt a frozen-backbone training ap-
proach that updates the parameters of the early exits only
(Fig 2). This strategy has a twofold gain: First, early exits and
their gradients only occupy a fraction of the global model’s
memory usage and require a significantly lower number of
FLOPs at training time. Second, as the network path to the
last exit remains unmodified, the original output of the global
model is maintained as a fail-safe, partly counteracting cat-
astrophic forgetting by allowing for situations where the
input sample does not follow the user-specific distribution.
To remedy the shortage of ground-truth labels in realis-

tic scenarios, we design an objective function that person-
alises the multi-exit network using: i) supervision, ii) self-
supervision or iii) self-distillation. When no hard labels are

available, either the soft labels (i.e. the softmax distribution)
(self-distillation) or the top-1 prediction (self-supervision)
from the last exit – which is typically the most accurate
classifier in the global dataset – can be used to “teach" the
early exits. The intuition is that the early exits, despite hav-
ing smaller learning capacity, can progressively approach
the accuracy of the last classifier for the personalised input
(i.e. a subset of the input distribution). If ground-truth labels
are available, we can leverage them (supervision) to further
fine-tune the exits and, thus, achieve even higher accuracy.

To this end, we introduce a hybrid loss function that com-
bines the three training schemes with a tunable weighting.
Specifically, we define the personalisation loss of exit 𝑖 as:
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where L (𝑖)

superv is the cross-entropy loss between the hard
label, 𝒚, and the output of the exit 𝑖 , 𝒚̂ (𝑖)

𝑇=1, L
(𝑖)
self-distill is the

KL divergence between the output of exit 𝑖 , 𝒚̂ (𝑖)
𝑇

, and the last
exit, 𝒚̂ (𝑀+1)

𝑇
, smoothed by temperature𝑇 [8], L (𝑖)

self-superv is the
cross-entropy loss treating the last exit’s top-1 prediction as
the ground-truth label, and 𝑒𝑥𝑐𝑙 (𝑥,𝑦) = (𝑥 = 0 ∨ 𝑦 = 0) en-
sures that 𝑥 and 𝑦 are mutually exclusive. Hyperparameters
𝛼 , 𝛽 and𝛾 determine the importance of the three components,
weighing the supervised, self-distillation and self-supervised
loss, respectively. By replacing cross-entropy with another
loss, the Trainer can also target other tasks such as regres-
sion. Finally, the overall training objective is to minimise the
sum of losses of all𝑀 exits across the user-specific data.
3.1.4 Confidence calibration. For the early-exit policy, we
estimate a classifier’s confidence for a given input using
the top-1 output value of its softmax layer [6], defined as
softmax(𝑧)𝑖 = 𝑒𝑧𝑖∑𝐾

𝑗=1 𝑒
𝑧𝑗

for the i-th classifier. An input takes the
i-th exit if the prediction confidence is higher than a tunable
threshold, 𝑡ℎ𝑟conf, following arg𝑖 {max𝑖 {softmax𝑖 } > 𝑡ℎ𝑟 conf}.
The exact value of 𝑡ℎ𝑟conf provides a trade-off between the
latency and accuracy of the multi-exit model and determines
the early-exit policy. If none of the classifiers reaches the
confidence threshold the original (last) classifier is used as a
fail-safe for non-personalised inputs.
PersEPhonEE re-calibrates its confidence threshold after

every personalisation round. This is performed by maintain-
ing a calibration set, obtained from the user’s input distribu-
tion. After the early-exit personalisation, the calibration set
is used to measure the average loss of each exit with respect
to the original model output, and the exit rate of each exit



which will affect the overall average inference latency. With
these measurements, PersEPhonEE performs a Pareto-front
analysis in the accuracy-average latency space and chooses
the smallest threshold that maintains the model’s accuracy
within a specific drop tolerance. Furthermore, early exits
that do not contribute much to the user-specific distribution
(e.g. they have a high loss) are pruned.

3.2 Inference Engine
The Inference Engine is responsible for executing the forward
pass of the multi-exit network over a supplied set of input
samples. These are either incoming samples to be classified
or stored past samples to be used for personalisation. The Or-
chestrator configures the Inference Engine by defining which
early exits to use and the early-exit policy, i.e. the threshold
above which an exit’s prediction is considered confident.
3.3 Profiler
In order for PersEPhonEE to make informed decisions about
the cost (i.e. latency, memory usage) and benefits (i.e. ac-
curacy) of using each classifier, we need to measure these
metrics for a personalised model on the target device. For this
reason, the Profiler gets invoked after a training session has
completed, while the phone is still plugged in. Specifically,
the profiler conducts one forward pass of the calibration
set, estimating 1) the latency, 2) top confidence and 3) accu-
racy of each classifier (𝑖), using the final prediction as the
ground-truth if no hard labels are present. Subsequently,
these metrics are passed to the Orchestrator (Section 3.4) to
decide the early-exit policy during inference.
3.4 Orchestrator
The Orchestrator is a key system component that measures
the run-time performance and is responsible for scheduling
the different operating phases of PersEPhonEE and config-
uring the Inference Engine. Three basic phrases are defined:
Inference phase: The selected exits and threshold are used
to configure the Inference Engine, saving computation time
and energy on the new samples.
Exploration phase: PersEPhonEE periodically re-evaluates
the quality of the early exits in the background, with a given
probability 𝑝expl. This is achieved by stochastically extract-
ing the output of the last classifier and calculating the loss
function for each of the selected early exits. If the average
loss of an intermediate classifier is consistently higher, there
has probably been a domain shift. To mitigate this, we raise
the confidence threshold to 𝑡ℎ𝑟 ′conf and schedule the trainer
to run on the newly encountered samples when the device
is plugged in. The values of 𝑝expl and 𝑡ℎ𝑟 ′conf can be selected
based on the transient load and battery level of the device as
well as the loss increase of the early classifier.
Personalisation phase: The on-device personalisation task
is scheduled overnight [2] and only when there are sufficient

new data on the device (Section 4.3) or when the active
threshold (Section 4.4.2) 𝑡ℎ𝑟 ′conf deviates significantly from
the validation set threshold 𝑡ℎ𝑟conf, as this indicates that the
user input distribution might have shifted since the last time
the exits were trained. Given the aforementioned conditions,
personalisation typically takes place on infrequent intervals,
e.g. monthly, and only after the device is plugged to a power
adapter and fully charged. Hence, the personalisation energy
cost is minimal compared to the resulting inference energy
savings during normal usage, i.e. when on battery power.

4 EVALUATION
We have developed PersEPhonEE on top of PyTorch and
torchvision and targeted two CNNs, namely ResNet-50 [7]
and MobileNetV2 [22]. All reported measurements are taken
on an Nvidia Jetson Xavier board equipped with a Quad-
core Arm Cortex-A57 and a dual-core NVIDIA Denver2 CPU.
We only use the embedded CPUs as they are comparable to
today’s flagship phones. For our experiments, we attach six
early exits (𝑀 = 6) in addition to the original final classifier,
giving seven total possible output locations. We pretrain
the global model (including the exits) on the global labelled
dataset in an offline manner and we only personalise early
classifiers on-device with or without the presence of ground-
truth labels, leaving the final output untouched. We fine-tune
the exits for 10 epochs with learning rate 0.01.
4.1 Datasets
To demonstrate the ability of early exits to personalise we
evaluate PersEPhonEE on two different datasets:
Personalised ImageNet: Based on ILSVRC 2012 [5], this is
a personalised variant created with the assumption that not
all users experience all 1000 labels with the same frequency.
To this end, each personalised user is assumed to be exposed
to images with labels whose frequency follow a Gaussian
distribution to better capture such biases [27]. After gener-
ating the user-specific label popularity, we sample images
from ImageNet to create each user’s personalised dataset.
FEMNIST:This is a real-world dataset aimed at hand-written
text recognition [3]. It contains 80K 28×28 images from 3.5K
users (225 images per user) belonging to 62 different classes
(10 digits, 26 lowercase, 26 uppercase letters). We mix the
data from 3250 random users to train the global model and
evaluate the personalisation results on each of the remaining
250 users, holding out 100 images per user for testing.
4.2 Accuracy on Personalised Exits
First, we evaluate the impact of on-device personalisation
on the accuracy of individual early exits, using ResNet-50
on ImageNet and MobileNetV2 on FEMNIST (Fig. 3).
Fig. 3a-Before shows the accuracy of the pretrained exits

on the personalised ImageNet dataset, whereas the dotted
line shows the original model’s accuracy. As expected, the
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Figure 3: Accuracies per early classifier.

earlier the exits are attached to the backbone, the lower the
accuracy is, ranging from 16% for exit-0 to 74.95% for exit-5,
similar to the original top-1 accuracy of 74.96%. By personal-
ising the early exits on-device with user-specific input, we
can greatly improve their accuracy for similar (personalised)
inputs. Under the presence of ground-truth labels (Fig. 3a-
Hard Labels), PersEPhonEE applies supervised personalisa-
tion with exit-1 reaching the original accuracy and pruning a
large part of the computation. Later exits attain even higher
accuracy than the global model (up to 90.9% for exit-5) as
they are now specialised for the user’s frequently seen labels.
When no labels are available on-device, PersEPhonEE uses
self-distillation. In this case, although the early exits do not
surpass the accuracy of the global model, some of the them
still reach its accuracy significantly faster (e.g. exit-2).
Fig. 3b depicts a different view, where we fix the person-

alised classifier and look into the empirical CDF of users
reaching a specific accuracy. It can be observed that by us-
ing supervised personalisation, the same users can achieve
higher accuracy faster. For instance, 75% of the users attain
90% accuracy at exit-0, while without personalisation this
was for 40% and 60% for the non-personalised final exit.
4.3 Training Samples Required
Different users might need different early-exit policies as
they might have varying amounts of data to train the model
as well as different input complexity. Therefore, it is impor-
tant to understand how much data are required to train a
personalised multi-exit model. Fig. 4, depicts the accuracy
achieved per early exit for varying number of samples. First,
we note that the accuracy of every exit is gradually improv-
ing as more data become available. Moreover, the earlier
the exit, the larger the improvement. As a result, different
exits can be used for users with different amount of data.
For example, users with 2K samples or more could utilise
exit-2 to achieve similar performance to the original model,
whereas users with solely 150 samples can use exit-3, still
saving more than 60% of the computational cost.
4.4 Performance Evaluation
4.4.1 Performance - Accuracy Trade-off. Here, we correlate
the achieved accuracy of our personalised early-exit model
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Figure 5: Accuracy vs. #parameters and FLOPs for each
exit, before and after personalisation.

with the amount of computation (FLOPs) and memory (#pa-
rameters) required. In Fig. 5, we depict this relationship for
each of the exits. With ground-truth (hard) labels, we observe
that the personalised classifiers can reach the original accu-
racy with 25.1× fewer parameters (Fig. 5b) and 3.1× fewer
FLOPs (Fig. 5d). Furthermore, accuracy is improved by 13
percentage points (pp) (to 87.8%) while using 4.7× fewer pa-
rameters and 1.6× fewer FLOPs, resulting in a configuration
that provides significant speedup, energy and accuracy gains.
With no labels available, on-device self-distillation results in
similar accuracy to the original network with 14.6× fewer
parameters (Fig. 5a) and 2.3× less FLOPs (Fig. 5d), exploiting
the more narrow, personalised input distribution.
4.4.2 On-device performance. In this section, we evaluate
the training and inference performance on mobile CPUs to
assess the feasibility of personalising CNNs on device.
Training: On-device personalisation does not require full
re-training of the model at hand. With the network’s back-
bone frozen, we only personalise the early classifiers lead-
ing to significant gains in performance. As witnessed in
Fig. 6a, multi-exit personalisation can be between 2× and
22.7× faster than full model training, with the main cost
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Figure 6: Execution times for training and inference
of personalised multi-exit ResNet-50 on mobile CPU.

allocated to the forward pass. This speedup is mainly at-
tributed to not re-training the whole model. This way, we
avoid the computational and memory overheads of tracking
activations and gradients for the full model.

PersEPhonEE aims to train networks overnight, when the
device is charged and idle [2]. Our experiments show that
such a training on a mobile platform (Jetson’s Arm Cortex
CPUs) is possible. For instance, to train Exit-2 overnight with
2048 samples only requires 1.7 hours, whereas personalising
all the exits simultaneously takes 6.8 hours. Finally, notice
that personalisation will not be required frequently, but only
when a data distribution shift is detected by the orchestrator.
Inference: In Fig. 6b, we observe that the inference time
grows linearly with respect to the early-exit FLOPs. As a re-
sult, on-device personalisation can deliver significant speed-
ups, leading to up to 3× higher inference throughput when
hard labels are used in our ImageNet-based experiments.
PersEPhonEE allows multiple exits to be attached upon

deployment, with the exit of a sample to be chosen at run
time by comparing with a confidence threshold. This way,
easier examples do not need to pass through the full depth
of the CNN, while out-of-distribution inputs (e.g. a new en-
vironment) propagate until the last classifier and, therefore,
maintaining the original model accuracy. Fig. 7 shows the
accuracy-latency trade-off for confidence thresholds 𝑡ℎ𝑟conf ∈
[0, 1] (increments of 0.05). We see that PersEPhonEE’s or-
chestrator can explore this space depending on the device
capabilities and performance of the personalised model. For
example, when the ground truth is available for personalisa-
tion, the orchestrator can choose configurations with similar
performance to the original network while achieving 3.2×
higher inference throughput (2.2× with soft labels).
5 DISCUSSION AND FUTUREWORK
With the wide availability of on-device data and the ever-
increasing concern about privacy, on-device training consti-
tutes a strong competitor to centralised solutions. In addition,
mobile devices are now equipped with unprecedented com-
pute capabilities. In this context, ML and systems researchers
and developers of today have to rethink the status quo as-
sumptions, e.g. IID-ness of user data, and take advantage of
the untapped compute available on users’ devices.
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Figure 7: Accuracy vs. inference latency for various
confidence thresholds.

PersEPhonEE offers a new perspective to the problem of
lifelong learning through a system that exploits on-device
data and multi-exit neural architectures to tailor models to a
specific user, improving both accuracy and efficiency. Two of
the key components in this endeavour are the ability to adapt
CNNs to a specific environment with or without labelled data
and the automated monitoring of both the training and in-
ference parameters by the system orchestrator, continuously
exploring opportunities to further improve performance.
At the same time, recent approaches that embrace the

heterogeneity of data and the abundance of devices in the
wild are becoming increasingly relevant. Meta-learning [9]
attempts to find good initialisation for personalised models
and to leverage expertise on different domains. Federated
learning (FL) [17] aims to train globally accurate models
without directly accessing the users’ data. We believe that
our work offers a missing piece in the equation, boosting the
efficiency in the deployment of personalised models.
As future work, we plan to integrate PersEPhonEE with

the aforementioned approaches to solve emerging challenges,
such as avoiding catastrophic forgetting of less frequent
knowledge or finding good initialisation for the early clas-
sifiers via meta-learning. Incorporation with FL will allow
PersEPhonEE to share the personalised knowledge to con-
stantly improve the global model while respecting user pri-
vacy. Moreover, tighter system integration with mobile ac-
celerators will allow PersEPhonEE to further optimise the
energy and latency footprint of AI training and inference.

6 CONCLUSIONS
This paper presents a framework for efficiently personalising
CNNs using solely on-device resources. The proposed system
introduces multi-exit networks that allow the customisation
of the CNN based on the device capabilities and significantly
reduce the computational overhead of training. Through an
efficient on-device training algorithm that leverages the last
exit’s output to distill personalised knowledge to the earlier
exits, the proposed system counteracts the common shortage
of ground-truth labels on the user device. Evaluation shows
that PersEPhonEE boosts the accuracy of early exits on user-
specific samples while delivering significant speedup for
both inference and training, making a decisive step towards
on-device personalisation of CNNs on mobile platforms.
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