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Abstract—The unprecedented performance of deep neural networks
(DNNs) has led to large strides in various Artificial Intelligence (AI)
inference tasks, such as object and speech recognition. Nevertheless,
deploying such AI models across commodity devices faces significant
challenges: large computational cost, multiple performance objectives,
hardware heterogeneity and a common need for high accuracy, together
pose critical problems to the deployment of DNNs across the various
embedded and mobile devices in the wild. As such, we have yet to
witness the mainstream usage of state-of-the-art deep learning algorithms
across consumer devices. In this paper, we provide preliminary answers
to this potentially game-changing question by presenting an array of
design techniques for efficient AI systems. We start by examining the
major roadblocks when targeting both programmable processors and
custom accelerators. Then, we present diverse methods for achieving
real-time performance following a cross-stack approach. These span
model-, system- and hardware-level techniques, and their combination.
Our findings provide illustrative examples of AI systems that do not
overburden mobile hardware, while also indicating how they can improve
inference accuracy. Moreover, we showcase how custom ASIC- and
FPGA-based accelerators can be an enabling factor for next-generation
AI applications, such as multi-DNN systems. Collectively, these results
highlight the critical need for further exploration as to how the various
cross-stack solutions can be best combined in order to bring the latest
advances in deep learning close to users, in a robust and efficient manner.

I. INTRODUCTION

The unprecedented predictive power of deep neural networks
(DNNs) has led to their ever-increasing usage on mobile and em-
bedded devices, transforming their capabilities and, consequently, our
lives. At the same time, real-time AI applications are also gaining
popularity. For instance, smart assistants are required to respond with
low latency [1] while AI video upscaling algorithms are required to
run at high frame rates in order to avoid rebuffering [2], [3].

Supporting real-time requirements on mobile hardware is becoming
more and more challenging as the complexity of state-of-the-art
DNNs is increasing exponentially [4]. Most device vendors have
started incorporating System-on-Chips (SoCs) that can accelerate
DNN computations, such as GPUs and NPUs. While these can
significantly accelerate DNN inference, developers still face the same
issue: they have to support the wide variety of devices that can be
found in the wild [5]–[7]. This includes older devices, low- and mid-
range smartphones, wearables and IoT devices. Hence, developers
frequently resort to deploying simpler or heavily compressed CNNs
at the expense of accuracy [8]. As real-time inference is not always
possible, DNN developers also rely on fully or partially offloading
to a remote infrastructure, such as the cloud or the edge [9], [10].
Offloading can improve inference latency and resolve the problem of
wide device compatibility, at the expense of using network and cloud
resources, raising privacy concerns [11] and yielding inconsistent user
experience due to varying networking conditions [12].

While on-device optimisations and computation offloading can
help supporting some real-time requirements, upcoming applications
impose even stricter deadlines: self-driving cars need to process multi-
sensor inputs within a few hundred milliseconds [13], an AR/VR
headset typically performs scene recognition within 20 milliseconds

while supporting 120 Hz frame-rates [14], whereas robotic assistants
need to run multiple models simultaneously to achieve context
awareness and to interact with their environment. Typically, these
scenarios are only addressed by co-designing DNNs with domain-
specific hardware, such as ASICs and FPGA-based accelerators.

In this paper, we will dive into prominent techniques that have been
used to support real-time AI in both general-purpose and customised
hardware platforms. We start by examining the major roadblocks and
then present diverse methods for achieving real-time performance that
span the whole stack: model-, system- and hardware-level techniques,
and their combination. Moreover, we showcase how and under which
settings custom ASIC- and FPGA-based accelerators can be an
enabling factor for next-generation AI applications.

II. COMMON ROADBLOCKS IN REAL-TIME AI

In an AI system, a stream of input samples (e.g. photos, video
frames, mic signals, or accelerometer readings) is processed by an AI
model, typically a DNN, in order to perform an inference (e.g. object
or speech recognition). Central to the operation of such a system is
the hardware processing unit that executes the DNN inference. The
architectural landscape of processing units for AI workloads can be
classified into two main categories: 1) programmable processors and
2) custom accelerators. This classification is based on the efficiency-
flexibility trade-off of the underlying hardware.

Despite the radical progress of deep learning, only a few big ven-
dors have been in position to integrate state-of-the-art AI technologies
across all their products. Even in these cases, a number of critical
issues are challenging the efficient and wide integration of DNN-
based algorithms in consumer devices:

1) DNN Diversity: DNN models vary in terms of task, architec-
ture, workload and resource demands. These factors have a direct
impact on the memory footprint, number of operations, computation-
to-communication ratio, the parallelisation potential and the resilience
to approximate computing techniques [15].

For classification tasks, even from 2012, DNNs such as AlexNet
and VGG-16 exhibited orders of magnitude higher computational
demands than other ML models. This was further aggravated with
the development of large-scale models, such as ResNet-152 and
DenseNet-161. Despite the design of efficient models, such as Mo-
bileNet and ShuffleNet, that employ novel blocks, such as depthwise
separable convolutions, to reduce the number of operations, these
blocks are often memory-bounded or underutilise the underlying pro-
cessing hardware. As such, the theoretical complexity reduction does
not always translate to actual performance gains upon deployment.

At the same time, tasks such as image/video super-resolution [16]
and semantic segmentation [17], are characterised by even larger
computational complexity. This mainly stems from the fact that, in
contrast to classification DNNs that reduce the feature maps’ size
as we go deeper in the network, these tasks require the size of the
feature maps to be maintained. The rationale behind this is that high-
quality super-resolution or segmentation require the propagation of



information about high-frequency details, such as the texture or the
contour of an object, until the output of the DNN. This property
affects significantly both the memory footprint and the number of
operations, imposing a barrier in achieving real-time performance.

In the field of NLP and ASR, applications are dominated by RNNs
(e.g. LSTMs/GRUs) and Transformers. The primary computational
challenge of these families of DNNs is that they consist of multiple
matrix-vector multiplications and hence are memory-bounded. As a
result, processors and accelerators that have typically been optimised
for compute-bound convolutional layers and matrix-matrix multipli-
cations are pushed to their limits [18] and performance becomes
bounded by the available off-chip memory bandwidth [19]. The same
holds for the case of Multi-Layer Perceptrons (MLPs) that rely only
on the memory-bound fully-connected (FC) layers [18].

Recently, neural architecture search (NAS) methodologies [20]
have rapidly been adopted to automatically generate highly accurate
and, sometimes, compact models for a target task. Nonetheless, NAS
often leads to nonintuitive topologies, up to the extreme case of
randomly wired networks [21], [22]. The complex and irregular
topology of such DNNs poses important problems in terms of
both compiling them for existing programmable processors [23] and
deriving a suitable custom accelerator [24].

In this context, the rapid algorithmic advancements from the AI
community are in need for future-proof solutions and hence call for
general hardware platforms that can be re-used from the following
generations of DNNs. On the other hand, high performance often
requires customisation, which in turn hurts generality. As a result,
finding a balance between flexibility and customisation remains a
challenging and crucial problem in the design of AI hardware.

2) Performance Objectives’ Variability: Depending on the end
application and target device, the performance requirements vary
significantly in terms of accuracy, latency, throughput, energy and
power across DNN applications. Even under the unified goal of real-
time processing, the application determines the lowest acceptable
accuracy and the platform dictates the available energy, power and
resource budget of the system. For instance, interactive applications,
such as VR and gaming, demand low latency (e.g. 20 ms), while
wearable devices require ultra-low-power solutions (e.g. <1 W).

3) System Heterogeneity: The different processing capabilities
of devices in the wild lead to wide system heterogeneity. This
comprises both the system software and the underlying hardware. On
the software side, the fragmented space of OS variants (e.g. numerous
versions of Android, iOS, Tizen, etc), together with the partial
support of a unified middleware (e.g. limited support and inconsistent
performance of NNAPI across smartphones [6], [7], [25]), poses
challenges in maintaining the functionality and performance through
time and across devices. On the hardware side, the large number of
vendors and the different use-cases have led to devices with broadly
different characteristics [5]–[7], [25], such as processing capabilities,
memory capacity, camera, mic and accelerometer sensors. As a result,
performance cannot be trivially sustained across devices, leading to
inconsistent quality of experience (QoE) for users of different devices.

4) Environment Dynamicity: Dynamicity is often manifested
in the form of reduced processing speed, longer delays during
memory transfers and degraded network bandwidth. The roots of
this phenomenon stem from i) the multi-tasking nature of mobile
systems [26], ii) the frequency throttling policies that are in-place to
avoid overheating [27] and iii) the fluctuations in the quality of the
network connectivity [28]. These factors often make the static design
analysis and performance estimation futile, and necessitate the design
of systems that can dynamically adapt to changes.

III. REAL-TIME AI ON PROGRAMMABLE PROCESSORS

Consumer devices, such as smartphones and tablets, typically host
processors that are able to serve a multitude of diverse workloads.
As such, their design follows a more general-purpose approach and
favours flexibility and programmability. We define as programmable
processor any architecture that consists of processing elements that
execute a stream of instructions, without introducing domain-specific
optimisations at the hardware or ISA level.

Such processors span from ubiquitous mobile CPUs, such as
Arm Cortex-A, Qualcom Kryo and Samsung Exynos [29], up to
more specialised units, such as mobile GPUs, DSPs and NPUs.
This class of processors can be found in many flavours, based on
the performance needs of the application and the cost, power and
form-factor constraints of the target platform. For instance, flagship
smartphones tend to host more powerful CPUs (e.g. the Arm Cortex-
X1 core in Samsung S21 Ultra) and GPUs than their mid- (e.g. Kryo
400 series in Samsung Galaxy A72) and low-tier (e.g. Arm Cortex-
53 in Samsung Galaxy J7) counterparts. A similar situation can be
observed for notebook and tablets which can host powerful processors
with a medium power limit (e.g. Apple M1 on MacBook and iPad
Pro with 15-watt TDP) compared to phones with tighter thermal
limits (e.g. Apple A14 SoC with 5 TDP on iPhone 12). On the other
hand, IoT devices, such as smart watches and home sensors, often
rely on energy-efficient, but memory-constrained, microcontrollers
(MCUs), so that they can be unintrusively integrated into the users’
everyday life. Nonetheless, the extensive flexibility of programmable
architectures comes at the cost of a hard limit on the attainable
processing speed and energy efficiency [30].

In the rest of this section, we present an array of solutions that
make important strides towards real-time AI, highlighting the essen-
tial components to achieve this goal. We classify these solutions based
on the entity of the system where the optimisation is implemented:

• System optimisations (Section III-A)
• Model optimisations (Section III-B)
• Joint model-system optimisations (Section III-C)

A. System Optimisations

An approach of addressing the system heterogeneity and meeting
real-time performance for AI inference is to adapt the deployment
to the characteristics of the device at hand. This adaptation process
involves finding the highest-performing resource configuration of
the target mobile SoC, such as enabling and disabling cores of
different types, defining the task-to-processor mapping, setting the
dynamic voltage and frequency scaling (DVFS) policy and making
server offloading decisions (Fig. 1a). With the exception of dynamic
DNNs [31], [32], the majority of deep learning models are charac-
terised by a static workload which is known before run time. This
advocates for an initial static optimisation stage. At the same time,
modern consumer devices are increasingly dealing with concurrent
execution of apps with various resource demands, performance needs
and random arrival/completion times. As such, dynamic adaptation
mechanisms are also key behind sustaining the required performance
during DNN inference.

Static & Dynamic System Adaptation: OODIn [25] is an on-
device framework that showcases the potential of system tuning
to tailor the DNN inference to the target platform. To capture the
multiple objectives of DNN inference workloads, OODIn introduces
a multi-objective optimisation framework that combines resource
constraints with accuracy and performance requirements. Next, the
framework identifies key system parameters, including the task-to-
processor mapping, the number of threads, the DVFS policy and
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Fig. 1: System tuning (a) and model adaptation (b), performed in
isolation or jointly, constitute pillars of real-time AI.

the level of precision quantisation of the DNN model, and exposes
them for optimisation to tailor the execution of the DNN to both
the application-level performance needs and the underlying hardware.
To this end, OODIn’s workflow is divided into two components: the
offline (or static) and the online (or dynamic).

During the offline stage, OODIn creates multiple model vari-
ants with different levels of quantisation in order to modify the
accuracy-complexity trade-off of the user-supplied model. As such,
OODIn’s offline optimisation method takes into account both the
model space and the user-supplied performance goals to yield the
optimal model and system configuration. Static optimisation leads to
average speedups of more than 70% over highly optimised status-quo
implementations across diverse devices and DNN models.

On the other hand, the online phase is responsible for the mobile
application’s robustness and adaptability. OODIn tracks the mobile
device’s dynamic recourse availability changes, due to multi-tasking
or thermal throttling, and reconfigures the selected parameters.
Timely and efficient dynamic adaptation leads to latency reductions
of up to 2.7× over statically optimised configurations.

Dynamic Onloading/Offloading: DNN developers who seek
state-of-the-art performance and broad device compatibility, typically
resort into offloading computation to a remote server, either on the
cloud or the edge. While this can resolve the problem of supporting
devices of various capabilities, cloud offloading can also result in
high operation costs, privacy issues and excessive dependence on the
networking conditions.

Computation onloading [33] aims to combine the best of both
worlds: i) the cloud’s elastic computational power and the ability
to support a wide variety of devices and ii) the fact that modern em-
bedded devices have, ever-increasing, DNN processing capabilities.
The main idea is to split a DNN into two parts; during inference the
device executes a part of the computation then transfers a heavily
compressed version of the intermediate results to a powerful server
to resume computation and then retrieve back the result. The main
idea is to onload as much computation as possible from cloud-native
models into resource constrained devices in order to maximise the
overall performance and reduce the cloud cost, while meeting the
application deadlines. As a result, powerful devices can process
most of the DNNs locally and, therefore, save cloud resources,
whereas less powerful devices might need more support from a server.
These systems monitor and dynamically adjust the split point at run
time, automatically freeing resources from the cloud by dynamically
utilising on-device hardware. Results show that dynamic onloading
can lead to an order of magnitude higher inference throughput while
saving cloud resources.

B. Model Optimisations

Under settings where the underlying processing engine is assumed
to be fixed, applying optimisations at the model level can lead to
substantial gains (Fig. 1b). Well-investigated methods of reducing the
cost of inference include quantisation [34], pruning [35] and low-rank
factorisation [36]. Orthogonal to these methods, two prominent types
of model optimisations that further push the performance on com-
modity processors constitute: 1) hardware-aware model adaptation
and 2) hardware-agnostic efficient model design. Primary assumption
in both cases is the availability of the training dataset for the target
AI task, which enables the model-level modifications.

1) Hardware-aware Model Adaptation: Recently, a plethora of
adaptive DNN architectures have been proposed. The overarching
objective is to exploit the variability in complexity of different
input samples in order to perform only the necessary amount of
computation to obtain an accurate prediction. Moreover, this class of
DNNs can tunably scale their resource usage and thus dynamically
adapt to any fluctuations in resource availability, either due to thermal
throttling or multi-tasking. To this end, various input-dependent
execution mechanisms have been proposed, leading to dynamic,
conditional DNN models. Such mechanisms include dynamically
pruned DNNs [37] and early-exit models [38].

Hardware-aware Early-Exit DNNs: To extract peak performance,
a stream of works has presented hardware-aware methods for the
construction of early-exit DNNs [32]. Such frameworks consider the
computational, memory and energy budget of a target platform, in
order to strategically attach early exits across the depth of a given
model and tune the associated early-exit policy.

HAPI [38] is a representative model-adaptation framework whose
goal is to convert vanilla DNNs into high-performance early-exit
models. This is achieved through a hardware-aware methodology
that considers both the characteristics of the target platform and
the maximum latency tolerance in order to automatically select the
number and position of early exits along the DNN architecture. As
such, the early-exit DNN topology is statically optimised before
deployment. Then, at run time, HAPI adopts a tunable confidence-
based early-exiting policy which dictates that a sample will stop
at the first exit that yields a confident-enough prediction. Through
this fine-grained parametrisation, HAPI tailors the early-exit model
(number and placement of exits) and the early-exit policy (confidence
threshold) to both the app-level performance requirements and the
platform capabilities, resulting in 2.33× speedup and 2.53 percentage
points (pp) higher accuracy than MobileNetV2 on Nvidia Jetson
Xavier under the same 10-watt power budget, highlighting the gains
that can be obtained through hardware-aware model adaptation.

2) Efficient Model Design: A promising approach that emphasises
generality is the manual or automated design of efficient, lightweight
models. Flows for efficient model design typically rely on platform-
agnostic metrics, such as FLOP count and model size, to set a
computational and memory budget. Although such proxy metrics
often do not translate to actual processing gains [5], [39], notable
performance gains have been achieved and mobile-friendly DNNs
such as MobileNet [40], SqueezeNet [41] and EfficientNet [42] have
been widely adopted in actual applications. Here, we describe three
prominent approaches for designing efficient models.

Budget-aware Neural Architecture Search: Recently, significant
effort has been placed into NAS (or AutoML) frameworks that
aim to find high-accuracy models under computational or memory
constraints [39], [43]. These frameworks typically adopt device-
independent metrics to guide their search towards compact models
that would potentially meet the required performance across devices.



Such a NAS-generated model is TPSR [44], a compact DNN for
the task of image super-resolution. Optimised for perceptual quality
and small footprint, TPSR delivers high-quality ×4 image upscaling
while consuming only 244 KB (FP32) or 61 KB (INT8) of memory.
With an average latency of 71 ms per image (i.e. 14 frames-per-
second) when upscaling to 720p using the NPU of a Qualcomm
Snapdragon 865 SoC, TPSR showcases the potential of budgeted
NAS even for the challenging case of mapping expensive tasks on
smartphones and other resource-constrained IoT platforms.

AutoML-powered Model Compression: A drawback of running
a complete NAS is the excessive computational requirement during
the search phase. To alleviate this cost, it is possible to parametrise
existing DNNs with parameters that expose an accuracy-complexity
trade-off and exploit the efficacy of AutoML in order to find a high-
performing configuration for these values. An example of this is
ShrinkML [45], [46] which targets streaming LSTM-based models for
automatic speech recognition (ASR) on mobile devices. ShrinkML
employs low-rank factorisation of each layer in order to tunably
prune the DNN weights. Each layer is compressed down to a different
degree, with the per-layer compression ratio determined automatically
using a reinforcement learning-based AutoML controller. This leads
to a 17 ms latency on an Exynos 9810 CPU, corresponding to 3×
speedup over the vanilla model.

Hand-crafted Model Optimisation: A third approach for achiev-
ing real-time performance is to apply hand-engineered optimisations.
Typically, such techniques are designed by domain experts and exploit
domain-specific opportunities to improve the attainable performance.
An instance of such a technique can be observed in the design of the
bunched-LPCNet model [47] for Text-to-Speech (TTS) applications.
The vanilla LPCNet is enhanced with sample bunching, a technique
that allows it to produce more than one sample per inference and,
in turn, reduce the overall computational cost. This is achieved by
grouping together S temporally neighbouring samples and modifying
the DNN architecture so that it can process all S samples as a bunch.
Deployed on an Exynos 9820 CPU, bunched-LPCNet delivers a
speedup of 2.19× over the non-optimised model and achieves a real-
time factor of 0.137. As such, by exploiting both the temporal nature
of TTS and the large capacity of the LPCNet’s GRUs, bunched-
LPCNet demonstrates the gains that can be obtained through careful
hand-crafted optimisations.

C. Joint Model-System Optimisation

A key approach to further boost the attainable performance is the
joint optimisation of both the model architecture and the system
parameters. Such schemes encompass techniques such as using alter-
native convolutional layers that map efficiently on the target hardware,
designing multiple models and intelligently scheduling each input
sample on the most suitable one based on a criterion, and strategically
parallelising across the various processors of modern mobile SoCs.

Model Selection & Heterogeneous Computing: MobiSR [16], a
framework for efficient super-resolution on smartphones, exemplifies
the merits of model-system co-design. With super-resolution DNNs
being especially computationally demanding, the proposed system
introduces optimisations at various levels: exploiting the difference
in upscaling difficulty among the different patches of an image,
MobiSR uses a pair of models, each pinned to a different processor
of the phone. The architecture of each model is optimised to yield
efficient execution on the associated processor. At run time, each
image patch’s difficulty is quantified based on a total-variation metric
and scheduled to the appropriate model-processor pair. Through
this model-system co-optimisation, MobiSR delivers 4.79× speedup

over highly optimised single-processor implementations on a phone
equipped with a Qualcomm Snapdragon 845 SoC.

Offloading Early-Exit DNNs for Robust Inference: Another
approach that aims at both high performance and robust inference
when the connectivity of the device to a server is uncertain is
presented by SPINN [10]. SPINN combines distributed device-
server inference with early-exit DNNs to deliver fast and robust
inference across dynamic settings. The proposed system jointly and
dynamically optimises the early-exit policy of the DNN (model-
level optimisation) and the device-server partition point (system-
level optimisation), providing previously unattainable adaptability to
dynamic conditions. As such, SPINN achieves 2× higher throughput
over existing distributed inference systems that solely optimise system
parameters. Moreover, by always placing an early exit on the device,
the accuracy is maintained high even under severely constrained
server availability. The concurrent use of distributed execution, adap-
tive early-exit DNNs and run-time system tuning leads to new levels
of flexibility and enables deployment across diverse devices.

D. How personalised DNNs can help?

To be deployable in the wild, AI models need to generalise across
a wide variety of inputs. For instance, facial landmark detectors are
trained to capture various demographics, speech recognisers to ac-
commodate different accents and voices, and home assistant robots to
work reliably across diverse household configurations. Traditionally,
to handle all these scenarios, parameter-heavy and computationally
costly models are trained on massive datasets that aim to capture
the majority of cases that will be encountered upon deployment. In
contrast to this approach, a different paradigm introduces on-device
model personalisation, aiming to tailor the DNN to a specific user or
environment. Personalised models can be used not only to improve
accuracy, but also as a way to improve efficiency.

One way to improve efficiency is to personalise early-exit
DNNs [48]. On-device personalisation aims at producing classifiers
along the depth of the network that are specialised for the user’s data.
At inference time, the model can either exit early if it is confident
on its early output, or progressively refine the quality of the result
using the deeper exits. A key advantage of early-exit personalisation
is that training can take place even without ground-truth labels in
a self-supervised manner, using the output of the DNN’s last exit.
This implies that a personalised task can become more and more
efficient as more personalised inputs are available, without any user
supervision. Furthermore, personalising only the early exits renders
the training process lightweight enough to take place overnight,
while the device is plugged in, without the need to access a remote
server. This approach was demonstrated by PersEPhonEE [48]. By
personalising an early-exit ResNet-50 using only on-device resources,
PersEPhonEE achieved a 2.2× speedup over the baseline model.

IV. REAL-TIME AI ON CUSTOM ACCELERATORS

Towards extracting peak performance and attenuating the sources
of inefficiency of standard processors, significant effort has been spent
on designing accelerators for DNNs. We define as custom accelera-
tors any architecture that applies domain-specific optimisations [49]
and/or approximate computing techniques [15] to trade off lower
programmability for higher performance. Such optimisations can
target different components of the underlying hardware. Prominent
instances constitute the following.

Simplified Control Logic: The programmable nature of processors
requires the use of app-agnostic control logic, which is responsible for



tasks such as instruction fetching and accessing the register file. In-
stead, custom accelerators employ a range of techniques to minimise
the overhead of this extraneous hardware or replace it with hardwired
control. Broadly used techniques include 1) domain-specific CISC
ISAs and fusion of common operations [50]–[52] which amortise the
overheads of instruction decoding over larger computational work,
and 2) data-driven streaming execution [53]–[55] where processing is
triggered whenever data are fed to the accelerator. Such approaches
have already been integrated in various accelerators, from Apple’s
M1 chip [56] and Nvidia’s Tensor Cores [57] to mobile NPUs by
Samsung [58], Qualcomm [59] and Huawei [60].

Specialized PE Design: Representative designs include, but are not
limited to, PEs tailored for i) sparse DNNs employing zero-skipping
units [61] (e.g. Samsung NPU [58]), ii) quantised DNNs through
custom fixed- [62] (Qualcomm [59] and Samsung NPUs [58]) or
floating-point representations (e.g. FP16 in Huawei Kirin NPUs [60]
and ms-fp9 in Microsoft’s Brainwave NPU [19], two-precision [63],
[64], mixed-precision [65] (e.g. Nvidia Tensor Cores [57], Qual-
comm’s 16-bit activations, 8-bit weights (A16W8) in Hexagon 698
NPU [59]) or bit-serial [66] units, and ii) binarised DNNs (BNNs)
with dot-product units replaced with popcount operators [54].

Tailored Interconnection: The inter-PE and PEs-to-buffers inter-
connect is designed based on the workload of the target DNN [67],
[68] for maximum performance and minimum external memory trans-
fers. This is typically driven by the computation-to-communication
ratio and the dimensions of the various layers of the target DNN.

Pipeline Organisation: This comprises accelerators [53], [54],
[69] whose pipelines follow the topology either of the full DNN
or of its main building block (e.g. residual block, Inception module,
dense block, etc). This approach allows the fine-grained allocation
of resources among the stages of the pipeline in order to match the
processing rate of each stage and reach peak throughput. Similar
designs can be found in various commodity devices, such as TV sets
with custom AI upscaling processors [70].

Custom Memory Subsystem: The on-chip memory organisation
is optimised to reduce the external memory bandwidth requirements
and increase data-reuse. Such solutions typically restructure the
on-chip memory and tailor the buffer sizes to match the DNN
workload, while often introducing dedicated compression schemes
for weights [36], [71]–[74] and feature maps [75], [76].

V. LOOKING AHEAD: THE NEXT MILE IN AI HARDWARE

Custom hardware is in position to continue being a driving force in
providing the computational power and energy efficiency needed for
emerging AI-powered consumer platforms. In this section, we discuss
two key directions for AI hardware architectures, namely i) multi-
tenant AI accelerators for the concurrent execution of multiple DNNs
and ii) automated model-hardware co-design methodologies for the
joint optimisation of DNNs and hardware. Furthermore, we discuss
how the unique properties of FPGAs can be the key in designing the
next-generation of AI processors for consumer devices.

A. Multi-Tenant AI Systems

As the use of AI across applications and users increases, so do
the computational demands. In this context, emerging systems tend
to employ either pipelines of multiple DNNs or are required to serve
queries from different users, each having their own dedicated DNN.
This is especially important for inherently multi-tasking platforms,
such as smartphones and home robots. However, existing platforms
are optimised for the execution of single-DNN apps. Thus, to cope
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with this increasing workload, new types of systems have to be
developed, specifically optimised for multi-DNN settings.

Mapping multiple DNNs on a computing platform poses important
challenges. With each DNN targeting a different task, the perfor-
mance needs, such as throughput and latency, vary accordingly. This
is aggravated by the fact that the multiple DNNs compete for the same
pool of resources - off-chip bandwidth and on-chip computational and
memory resources. As such, there is an emerging need for solutions
that consider both the performance needs of each model and the
resource constraints of the underlying platform. Recently, a few works
have paved the way towards a new class of multi-DNN systems,
encompassing both 1) hardware and 2) software aspects.

1) Multi-DNN Accelerators: Starting from 2018 [77], a number
of accelerators [77]–[84] have focused on the multi-tenancy scenario.
Fig. 2 shows the spectrum of multi-DNN hardware architectures. Key
challenges comprise i) the customisation-programmability trade-off,
i.e. how much to customise the hardware for each DNN and how
much to reuse across DNNs, and ii) avoiding the resource contention
between DNNs, i.e. how to best use the available resources without
throttling the performance of the DNNs. The selected strategies for
addressing these two issues determine to a great extent the design
decisions of the underlying accelerator.

On the customisation side, f-CNNx [77] exploits the static work-
load of DNN models and derives dedicated compute engines for each
DNN (Fig. 2a), highly tailored to the DNN’s workload and applica-
tion’s performance needs. Furthermore, by means of a multi-DNN
hardware scheduler, it optimises the external memory bandwidth
sharing, in order to minimise the contention between the engines.

Focusing on flexibility, [78] introduces heterogeneous dataflow
accelerators (HDAs), which consist of multiple sub-accelerators
(Fig. 2b), each supporting a different dataflow. At run time, each
DNN or each DNN layer can be mapped to the most suitable sub-
accelerator. With the same goal of mapping each DNN layer to
the most appropriate engine, Planaria [79] proposes the run-time
construction of compute engines by means of multiple composable
systolic arrays. Upon execution, the system examines the workloads
of the target DNNs, appropriately connects the systolic arrays for
each DNN layer and, finally, schedules execution.

With a focus on maximising the resource and bandwidth utilisation,
AI-MT [80] co-locates multiple DNNs on a single DNN engine
(Fig. 2c) and schedules simultaneously compute- and memory-bound
sub-layers of the different DNNs. In this manner, the different sub-
layers complementarily utilise the available computational and band-
width resources, leading to high performance and efficient sharing
of the proposed accelerator. Similarly, [81] and [85] also target
single DNN engines and present dataflow mirroring and a preemption
module, respectively, two hardware-level enhancements that aim to
optimise the concurrent execution of multiple co-located DNNs on
the underlying engine.

Another stream of work investigated the optimal derivation of
multi-DNN architectures and the scheduling of DNNs on them
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through design space exploration [77], [82] and contention-aware
performance estimation techniques [83].

2) Multi-DNN System Software: To support multi-DNN appli-
cation on existing and emerging hardware platforms, a number
of software runtimes have been proposed. So far, research effort
has been invested on optimising multi-DNN applications for pro-
grammable processors (Fig. 2d). In these works, the scheduler (Fig. 3)
constitutes the most prominent component that effectively determines
the attainable performance of the system. DART [86] is a sched-
uler that employs pipelining and priority-based scheduling across
heterogeneous processors in order to execute multiple DNN tasks
with deterministic response times. PREMA [85] proposes a DNN-
specific priority-based preemptive scheduling algorithm to optimise
the execution of multiple models on a single NPU. Similar to
AI-MT [80], but from a scheduling perspective, Layerweaver [87]
introduces a scheme for scheduling together a memory-bound and a
compute-bound DNN, improving the utilisation of both the external
memory bandwidth and the computational resources. Adopting a
different viewpoint, MASA [88] comprises a memory-aware scheduler
for minimising the memory swapping between DNNs. With a more
model-software co-design approach, NestDNN [26] employs multi-
capacity models that can dynamically adapt their computational
needs. As such, a scheduler can adapt at run time the complexity
of each DNN to optimise the overall multi-DNN execution. Finally,
targeting mobile robot and IoT platforms, Lee et al. [89] proposed
a weights virtualisation scheme that enables the sharing of weights
among DNNs and their efficient in-memory execution.

3) Open Challenges: Here, we discuss open issues and future
directions that have only lightly been explored by the initial efforts.

Performance vs. Flexibility: The early work on multi-DNN sys-
tems has currently produced diverse designs with a mostly decoupled
consideration of the hardware and software aspects. Currently, peak
performance is reached through fine-grained customisability [77] at
the expense of a new hardware design cycle whenever a different
set of DNNs is targeted. Although this approach may be viable
for reconfigurable FPGA-based platforms, where the fabric can be
reprogrammed with a different design in the occurrence of a new
set of DNNs, ASIC designs require future-proof solutions that can
amortise the fabrication cost through broad and efficient re-use across
DNN workloads. This performance-flexibility gap is yet to be bridged
in the multi-DNN context and remains a promising research avenue.

Approximate Computing for Multiple DNNs: Another promising
approach for exposing more optimisation opportunities for multi-
DNN accelerators is approximate computing. Under such schemes,
the system would exploit performance-resource usage trade-offs with
a controlled drop in accuracy [15]. Examples of such techniques
include using different arithmetic precision for each DNN [64]
or compressing their weights to a nonuniform degree [74]. For
multiple DNNs, this encompasses the development of methods that
exploit the cross-DNN redundancy, identify workload commonalities
or differences in resilience to quantisation across the DNN models
in order to reduce the external memory bandwidth requirements,

better coordinate execution and allocate resources among the DNNs.
An early approach was presented in [84] targeting multi-LSTM
applications. In this case, the approximate computing method consists
of a parametrised scheme for jointly decomposing the weight matrices
of all the target LSTM models, followed by structured pruning and
quantisation steps. The design of the associated accelerator is co-
optimised together with approximation parameters in order to yield
a tailored hardware design that satisfies a user-defined accuracy
constraint, leading to 3×-5× speedup.

Multi-DNN Model-Hardware Co-Design: Finally, towards ex-
tracting both maximum performance and accuracy, model-hardware
co-design approaches can be developed that would provide maximal
degrees of freedom in the design space. Such methodologies can
consider the multiple AI tasks and design from scratch both the DNN
architectures and the underlying hardware. An early work towards
this direction is ASICNAS [90]. To tackle the exponential design
space of multi-DNN and accelerator co-optimisation, ASICNAS
considers a limited number of pre-defined hardware architectures in
its search space. With more than 2× energy savings and less than
1.6% accuracy drop, this work showcases the potential of co-design
schemes in pushing further the performance of multi-DNN systems.
Nevertheless, the primary challenge that obstructs multi-DNN model-
hardware co-design is still present: the excessively high-dimensional
design space that includes model-, scheduling- and hardware-level
parameters. As such, research effort needs to be invested in over-
coming this complexity through efficient methodologies in order to
lead to the next-generation of multi-DNN platforms.

B. Automated Model-Hardware Co-Design

Traditional flows in the development of AI products consist of
two steps: 1) designing and training a DNN model that achieves
the required accuracy for the target task under a FLOPs or memory
budget and 2) optimising the resulting model for execution on a target
platforms, e.g. particular mobile phones and IoT devices. In spite of
each successes, this approach can lead to suboptimal performance.

An alternative single-stage paradigm that is gaining traction is to
jointly search for the DNN architecture and the hardware design [91]–
[97]. Such a co-design approach can lead to closer-to-optimal con-
figurations and aims to deliver peak performance in terms of both
accuracy and processing speed. Nevertheless, main barrier constitutes
the excessively large model-hardware design space.

To counteract the complex design space and explore a sufficiently
large number of candidate designs, one line of work [91], [93]–[95],
[98] has adopted pre-defined hardware templates and expose only
high-level design parameters in the search space. Others works have
incorporated streaming architectures with finer-grained customisabil-
ity in their hardware design space [96] or have integrated quantisation
into the search space [94], [96]

In an endeavour to push the hardware efficiency to its limits, recent
works [99], [100] have designed DNN models that map well to FPGA
building blocks. For instance, LUTNet [99] and LogicNets [100]
incorporate Look-Up Tables (LUTs) as their primitive computational
unit, reaching substantial area reduction and throughput gains over
both conventional and binarised NNs. The resulting models can be
directly mapped to FPGA-based platforms, avoiding the source of
inefficiencies of more generic architectures. This is especially impor-
tant for very resource-constrained platforms in IoT use-cases, where
low-cost FPGAs without explicit DSP blocks are often deployed.
Nonetheless, with this technology being at its infancy, the high perfor-
mance currently comes with non-negligible drop in accuracy, which
in some applications cannot be tolerated. As such, to incentivise
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the wider exploration and potentially real-world adoption of these
approaches, the performance and accuracy of such designs has to be
scaled up and demonstrated on broader use-cases.

C. FPGAs for Deriving Next-Generation AI Processors

At the moment, there is a constant trend towards integrating NPUs
into both mobile SoCs [5], [6] and servers [18], [19]. At the same
time, deep learning models are evolving rapidly, with architectural
changes affecting also their computational characteristics. Due to this,
coming up with energy-efficient and high-performance accelerator
designs becomes a challenge. In this context, FPGAs can be a key
enabler in discovering future NPU designs (Fig. 4). By exploiting the
reconfigurability of FPGAs, a large number of candidate hardware
designs can be explored and run on the FPGA platform to measure
critical metrics, including processing speed, power consumption
and area. Given the constraints of the target platform across these
dimensions, the objective of this process is to find the Pareto-optimal
accelerator design for a number of representative DNN models. After
the highest performing design has been identified, it can be converted
to an ASIC and integrated as an NPU into future consumer devices.

VI. CONCLUSION

As real-time AI applications are becoming more and more popular,
their use-cases are also becoming more demanding. Supporting such
applications on mobile and embedded hardware that is ubiquitous
across consumer devices poses important challenges. In this paper,
we looked into the current roadblocks that need to be addressed and
identified key themes such as the DNN and hardware heterogeneity
as well as the dynamicity of the execution environment. Afterwards,
we looked into state-of-the-art practices and research directions for
both programmable processors and custom accelerators. We further
highlighted important future research avenues, with emphasis on
multi-tenant inference systems and model-hardware co-design. Our
findings reinforce the need to provide solutions across the whole
stack; combined research on model, system, platform and hardware
optimisations will be of key importance in order to support the next
generation of real-time AI applications on mobile/embedded devices.
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