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ABSTRACT
Despite the soaring use of convolutional neural networks (CNNs)

in mobile applications, uniformly sustaining high-performance in-

ference on mobile has been elusive due to the excessive compu-

tational demands of modern CNNs and the increasing diversity

of deployed devices. A popular alternative comprises offloading

CNN processing to powerful cloud-based servers. Nevertheless, by

relying on the cloud to produce outputs, emerging mission-critical

and high-mobility applications, such as drone obstacle avoidance or

interactive applications, can suffer from the dynamic connectivity

conditions and the uncertain availability of the cloud. In this paper,

we propose SPINN, a distributed inference system that employs

synergistic device-cloud computation together with a progressive

inference method to deliver fast and robust CNN inference across

diverse settings. The proposed system introduces a novel scheduler

that co-optimises the early-exit policy and the CNN splitting at run

time, in order to adapt to dynamic conditions and meet user-defined

service-level requirements. Quantitative evaluation illustrates that

SPINN outperforms its state-of-the-art collaborative inference coun-

terparts by up to 2× in achieved throughput under varying network

conditions, reduces the server cost by up to 6.8× and improves ac-

curacy by 20.7% under latency constraints, while providing robust

operation under uncertain connectivity conditions and significant

energy savings compared to cloud-centric execution.

CCS CONCEPTS
• Computing methodologies→ Distributed computing method-
ologies; •Human-centered computing→ Ubiquitous and mobile
computing.
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Figure 1: Existing methods vs. SPINN.

1 INTRODUCTION
With the spectrum of CNN-driven applications expanding rapidly,

their deployment across mobile platforms poses significant chal-

lenges. Modern CNNs [20, 68] have excessive computational de-

mands that hinder their wide adoption in resource-constrained mo-

bile devices. Furthermore, emerging user-facing [80] and mission-

critical [37, 42, 66] CNN applications require low-latency processing

to ensure high quality of experience (QoE) [4] and safety [11].

Given the recent trend of integrating powerful System-on-Chips

(SoCs) in consumer devices [2, 25, 78], direct on-device CNN ex-

ecution is becoming possible (Figure 1 - top left). Nevertheless,

while flagship devices can support the performance requirements

of CNN workloads, the current landscape is still very diverse, in-

cluding previous-gen and low-end models [80]. In this context, the

less powerful low-tier devices struggle to consistently meet the

application-level performance needs [2].

As an alternative, service providers typically employ cloud-centric

solutions (Figure 1 - top right). With this setup, inputs collected by

mobile devices are transmitted to a remote server to perform CNN

inference using powerful accelerators [3, 6, 12, 19, 31, 32]. How-

ever, this extra computation capability comes at a price. First, cloud

execution is highly dependent on the dynamic network conditions,

with performance dropping radically when the communication

channel is degraded. Second, hosting resources capable of accel-

erating machine learning tasks comes at a significant cost [40].

Moreover, while public cloud providers offer elastic cost scaling,

there are also privacy and security concerns [64].

To address these limitations, a recent line of work [22, 34, 46] has

proposed the collaboration between device and cloud for CNN infer-

ence (Figure 1 - top center). Such schemes typically treat the CNN as

a computation graph and partition it between device and cloud. At

run time, the client executes the first part of themodel and transmits
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the intermediate results to a remote server. The server continues

the model execution and returns the final result back to the device.

Overall, this approach allows tuning the fraction of the CNN that

will be executed on each platform based on their capabilities.

Despite their advantages, existing device-cloud collaborative in-

ference solutions suffer from a set of limitations. First, similar to

cloud execution, the QoE is greatly affected by the network condi-

tions as execution can fail catastrophically when the link is severely

deteriorated. This lack of network fault tolerance also prevents

the use of more cost-efficient cloud solutions, e.g. using ephemeral

spare cloud resources at a fraction of the price.
1
Furthermore, CNNs

are increasingly deployed in applications with stringent demands

across multiple dimensions (e.g. target latency, throughput and ac-

curacy, or device and cloud costs).
2
Existing collaborative methods

cannot sufficiently meet these requirements.

To this end, we present SPINN, a distributed system that enables

robust CNN inference in highly dynamic environments, while meet-

ing multi-objective application-level requirements (SLAs). This is

accomplished through a novel scheduler that takes advantage of

progressive inference; a mechanism that allows the system to exit

early at different parts of the CNN during inference, based on the

input complexity (Figure 1 - bottom). The scheduler optimises the

overall execution by jointly tuning both the split point selection

and the early-exit policy at run time to sustain high performance

and meet the application SLAs under fluctuating resources (e.g. net-
work speed, device/server load). The guarantee of a local early exit

renders server availability non-critical and enables robust operation

even under uncertain connectivity. Overall, this work makes the

following key contributions:

• A progressive inference mechanism that enables the fast and

reliable execution of CNN inference across device and cloud.

Concretely, on top of existing early-exit designs, we propose an

early-exit-aware cancellation mechanism that allows the inter-

ruption of the (local/remote) inference when having a confident

early prediction, thus minimising redundant computation and

transfers during inference. Simultaneously, reflecting on the un-

certain connectivity of mobile devices we design an early-exit

scheme with robust execution in mind, even under severe con-

nectivity disruption or cloud unavailability. By carefully placing

the early exits in the backbone network and allowing for graceful

fallback to locally available results, we guarantee the responsive-

ness and reliability of the system and overcome limitations of

existing offloading systems.

• A CNN-specific packing mechanism that exploits the reduced-

precision resilience and sparsity of CNN workloads to minimise

transfer overhead. Our communication optimiser combines a

lossless and an accuracy-aware lossy compression component

which exposes previously unattainable designs for collaborative

inference, while not sacrificing the end accuracy of the system.

• An SLA- and condition-aware scheduler that co-optimises i) the

early-exit policy of progressive CNNs and ii) their partitioning

between device and cloud at run time. The proposed scheduler

employs a multi-objective framework to capture the user-defined

importance of multiple performance metrics and translate them

1
AWS Spot Instances – https://aws.amazon.com/ec2/spot/.

2
Typically expressed as service-level agreements (SLAs).

into SLAs. Moreover, by surveilling the volatile network condi-

tions and resources load at run time, the scheduler dynamically

selects the configuration that yields the highest performance by

taking into account contextual runtime information and feedback

from previous executions.

2 BACKGROUND AND RELATEDWORK
To optimise the execution of CNN workloads, several solutions

have been proposed, from compiler [1, 30, 65] and runtime opti-

misations [36, 43, 49] to custom cloud [7, 19, 34] and accelerator

designs [75, 79]. While these works target a single model with

device- or cloud-only execution, the increased computational capa-

bilities of client devices [2, 25] have led to schemes that maximise

performance via device-cloud synergy. Next, we outline significant

work in this direction and visit approximate computing alternatives

which exploit accuracy-latency trade-offs during inference.

Approximate Inference. In applications that can tolerate some

accuracy drop, a line of work [9, 18, 45] exploits the accuracy-

latency trade-off through various techniques. In particular, NestDNN
[9] employs a multi-capacity model that incorporates multiple de-

scendant (i.e. pruned) models to expose an accuracy-complexity

trade-off mechanism. However, such models cannot be natively

split between device and cloud. On the other hand, model selec-

tion systems [18, 45] employ multiple variants of a single model

(e.g. quantised, pruned) with different accuracy-latency trade-offs.

At run time, they choose the most appropriate variant based on the

application requirements and determine where it will be executed.

Similarly, classifier cascades [21, 33, 38, 39, 71] require multiple

models to obtain performance gains. Despite the advantages of

both, using multiple models adds substantial overhead in terms of

maintenance, training and deployment.

Progressive Inference Networks. A growing body of work

from both the research [23, 35, 72, 81, 84] and industry commu-

nities [55, 74] has proposed transforming a given model into a

progressive inference network by introducing intermediate exits

throughout its depth. By exploiting the different complexity of

incoming samples, easier examples can early-exit and save on fur-

ther computations. So far, existing works have mainly explored

the hand-crafted design of early-exit architectures (MSDNet [23],

SCAN [84]), the platform- and SLA-agnostic derivation of early-exit

networks from generic models (BranchyNet [72], SDN [35]) or the
hardware-aware deployment of such networks (HAPI [44]). Despite
the recent progress, these techniques have not capitalised upon the

unique potential of such models to yield high mobile performance

through distributed execution and app-tailored early-exiting. In this

context, SPINN is the first progressive inference approach equipped

with a principled method of selectively splitting execution between

device and server, while also tuning the early-exit policy, enabling

high performance across dynamic settings.

Device-Cloud Synergy for CNN Inference. To achieve effi-

cient CNN processing, several works have explored collaborative

computation over device, edge and cloud. One of the most promi-

nent pieces of work, Neurosurgeon [34], partitions the CNN be-

tween a device-mapped head and a cloud-mapped tail and selects a
single split point based on the device and cloud load as well as the

network conditions. Similarly, DADS [22] tackles CNN offloading,

but from a scheduler-centric standpoint, with the aim to yield the

https://aws.amazon.com/ec2/spot/
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Figure 2: Overview of SPINN’s architecture.

optimal partitioning scheme in the case of high and low server

load. However, both systems only optimise for single-criterion ob-

jectives (latency or energy consumption), they lack support for

app-specific SLAs, and suffer catastrophically when the remote

server is unavailable. With a focus on data transfer, JALAD [47] in-

corporates lossy compression to minimise the offload transmission

overhead. Nevertheless, to yield high performance, the proposed

system sacrifices substantial accuracy (i.e. >5%). JointDNN [8] mod-

elled CNN offloading as a graph split problem, but targets only

offline scheduling and static environments instead of highly dy-

namic mobile settings. Contrary to these systems, SPINN intro-

duces a novel scheduler that adapts the execution to the dynamic

contextual conditions and jointly tunes the offloading point and

early-exit policy to meet the application-level requirements. More-

over, by guaranteeing the presence of a local result, SPINN provides
resilience to server disconnections.

Apart from offloading CNNs to a dedicated server, a number of

works have focused on tangential problems. IONN [29] tackles a

slightly different problem, where instead of preinstalling the CNN

model to a remotemachine, the client device can offload to any close-

by server by transmitting both the incoming data and the model in

a shared-nothing setup. Simultaneously, various works [50, 51, 85]

have examined the case where the client device can offload to other

devices in the local network. Last, [73] also employs cloud-device

synergy and progressive inference, but with a very different focus,

i.e. to perform joint classification from a multi-view, multi-camera

standpoint. Its models, though, are statically allocated to devices and

its fixed, statically-defined early-exit policy, renders it impractical

for dynamic environments.

OffloadingMulti-exitModels.Closer to our approach, Edgent
[46] proposes a way of merging offloading with multi-exit models.

Nonetheless, this work has several limitations. First, the inference

workflow disregards data locality and always starts from the cloud.

Consequently, inputs are always transmitted, paying an additional

transfer cost. Second, early-exit networks are not utilised with

progressive inference, i.e. inputs do not early-exit based on their

complexity. Instead, Edgent tunes the model’s complexity by se-

lecting a single intermediary exit for all inputs. Therefore, the end

system does not benefit from the variable complexity of inputs.

Finally, the system has been evaluated solely on simple models

(AlexNet) and datasets (CIFAR-10), less impacted by low-latency

or unreliable network conditions. In contrast, SPINN exploits the
fact that data already reside on the device to avoid wasteful in-

put transfers, and employs a CNN-tailored technique to compress

the offloaded data. Furthermore, not only our scheduler supports

additional optimisation objectives, but it also takes advantage of

the input’s complexity to exit early, saving resource usage with

minimal impact on accuracy.

3 PROPOSED SYSTEM
To remedy the limitations of existing systems, SPINN employs a pro-

gressive inference approach to alleviate the hard requirement for

reliable device-server communication. The proposed system intro-

duces a scheme of distributing progressive early-exit models across

device and server, in which one exit is always present on-device,

guaranteeing the availability of a result at all times. Moreover, as

early exits along the CNN provide varying levels of accuracy, SPINN
casts the acceptable prediction confidence as a tunable parameter to

adapt its accuracy-speed trade-off. Alongside, we propose a novel

run-time scheduler that jointly tunes the split point and early-exit

policy of the progressive model, yielding a deployment tailored

to the application performance requirements under dynamic con-

ditions. Next, we present SPINN’s high-level flow followed by a

description of its components.

3.1 Overview
SPINN comprises offline components, run once before deployment,

and online components, which operate at run time. Figure 2 shows

a high-level view of SPINN. Before deployment, SPINN obtains a

CNN model and derives a progressive inference network. This is

accomplished by introducing early exits along its architecture and

jointly training them using the supplied training set (Section 3.2

1 ). Next, the model splitter component (Section 3.3 2 ) identi-

fies all candidate points in the model where computation can be

split between device and cloud. Subsequently, the offline profiler

(Section 3.4 3 ) calculates the exit-rate behaviour of the generated

progressive model as well as the accuracy of each classifier. More-

over, it measures its performance on the client and server, serving

as initial inference latency estimates.

At run time, the scheduler (Section 3.5 4 ) obtains these initial

timings along with the target SLAs and run-time conditions and

decides on the optimal split and early-exit policy. Given a split
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Figure 3: Accuracy of progressive networks across different
confidence threshold values.

point, the communication optimiser (Section 3.6 5 ) exploits the

CNN’s sparsity and resilience to reduced bitwidth to compress

the data transfer and increase the bandwidth utilisation. The ex-

ecution engine (Section 3.7 6 ) then orchestrates the distributed

inference execution, handling all communication between parti-

tions. Simultaneously, the online profiler monitors the execution

across inferences, as well as the contextual factors (e.g. network,
device/server load) and updates the initial latency estimates. This

way, the system can adapt to the rapidly-changing environment,

reconfigure its execution and maintain the same QoE.

3.2 Progressive Inference Model Generator
Given a CNNmodel, SPINN derives a progressive inference network
(Figure 2 1 ). This process comprises a number of key design deci-

sions: 1) the number, position and architecture of intermediate classi-

fiers (early exits), 2) the training scheme and 3) the early-exit policy.
Early Exits. We place the intermediate classifiers along the

depth of the architecture with equal distance in terms of FLOP

count. With this platform-agnostic positioning strategy, we are

able to obtain a progressive inference model that supports a wide

range of latency budgets while being portable across devices. With

respect to their number, we introduce six early exits in order to

guarantee their convergence when trained jointly [35, 48], placed

at 15%, 30%, . . . 90% of the network’s total FLOPs. Last, we treat the

architecture of the early exits as an invariant, adopting the design

of [23], so that all exits have the same expressivity [59].

Training Scheme.We jointly train all classifiers from scratch

and employ the cost function introduced in [35] as follows: L =∑𝑁−1
𝑖=0 𝜏𝑖 ∗ L𝑖 with 𝜏𝑖 starting uniformly at 0.01 and linearly increas-

ing it to a maximum value of𝐶𝑖 , which is the relative position of the

classifier in the network (𝐶0 = 0.15,𝐶1 = 0.3, . . . ,𝐶final = 1). The ra-

tionale behind this is to address the problem of “overthinking” [35],

where some samples can be correctly classified by early exits while

being misclassified deeper on in the network. This scheme requires

the fixed placement of early exits prior to the training stage. Despite

the inflexibility of this approach to search over different early-exit

placements, it yields higher accuracy compared to the two-staged

approach of training the main network and the early classifiers

in isolation. In terms of training time, the end-to-end early-exit

networks can take from 1.2× to 2.5× the time of the original net-

work training, depending on the architecture and number of exits.

In fact, the higher training overhead happens when the ratio of

𝐹𝐿𝑂𝑃𝑆𝑒𝑎𝑟𝑙𝑦_𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟
𝐹𝐿𝑂𝑃𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑛𝑒𝑡𝑤𝑜𝑟𝑘

is higher. However, given that this cost is paid
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once offline, it is quickly amortised by the runtime latency benefits

of early exiting on confident samples.

Early-exit Policy. For the early-exit strategy, we estimate a

classifier’s confidence for a given input using the top-1 output value

of its softmax layer (Eq. (1)) [13]. An input takes the i-th exit if the

prediction confidence is higher than a tunable threshold, 𝑡ℎ𝑟conf
(Eq. (2)). The exact value of 𝑡ℎ𝑟conf provides a trade-off between

the latency and accuracy of the progressive model and determines

the early-exit policy. At run time, SPINN’s scheduler periodically
tunes 𝑡ℎ𝑟conf to customise the execution to the application’s needs.

If none of the classifiers reaches the confidence threshold, the most

confident among them is used as the output prediction (Eq. (3)).

softmax(𝑧)𝑖 =
𝑒𝑧𝑖∑𝐾
𝑗=1 𝑒

𝑧 𝑗
(Softmax of i-th exit) (1)

arg𝑖 {max
𝑖
{softmax𝑖 } > 𝑡ℎ𝑟 conf } (Check i-th exit’s top-1) (2)

argmax

𝑗∈classifiers
{max
𝑖
{softmax

𝑗

𝑖
}} (Return most confident) (3)

where 𝑧𝑖 is the output of the final fully-connected layer for the i-th

label, 𝐾 the total number of labels, 𝑗∈[0, 6] the classifier index and
𝑡ℎ𝑟 conf the tunable confidence threshold.

Impact of Confidence Threshold. Figure 3 and 4 illustrate the
impact of different early-exit policies on the accuracy and early-exit

rate of progressive models, by varying the confidence threshold

(𝑡ℎ𝑟conf). Additionally, Figure 3 reports on the accuracy without

progressive inference (i.e. last exit only, represented by the red

dotted line). Note that exiting only at the last exit can lead to lower

accuracy than the progressive models for some architectures, a phe-

nomenon that can be attributed to the problem of “overthinking"
3
.

Based on the figures, we draw two major conclusions that guide

the design of SPINN’s scheduler. First, across all networks, we ob-
serve a monotonous trend with higher thresholds leading to higher

accuracies (Figure 3) while lower ones lead to more samples exit-

ing earlier (Figure 4). This exposes the confidence threshold as a

tunable parameter to control accuracy and overall processing time.

Second, different networks behave differently, producing confident
predictions at different exits along the architecture. For example,

Inception-v3 on CIFAR-100 can obtain a confident prediction earlier

on, whereas ResNet-50 on ImageNet cannot classify robustly from

early features only. In this respect, we conclude that optimising the

confidence threshold for each CNN explicitly is key for tailoring

the deployment to the target requirements.

3
“Overthinking" [35] dictates that certain samples that would normally get misclassi-

fied by reaching the final classifier of the network if they exit early, they get classified

correctly. This leads to small accuracy benefits of progressive inference networks that

neither the original model would have (due to early-exiting) nor a single-exit smaller

variant (due to late-exiting).
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3.3 Model Splitter
After deriving a progressive model from the original CNN, SPINN
aims to split its execution across a client and a server in order to

dynamically utilise remote resources as required by the application

SLAs. The model splitter (Figure 2 2 ) is responsible for 1) defining

the potential split points and 2) identifying them automatically in

the given CNN.

Split Point Decision Space. CNNs typically consist of a se-

quence of layers, organised in a feed-forward topology. SPINN
adopts a partition scheme which allows splitting the model along

its depth at layer granularity. For a CNN with 𝑁𝐿 layers, there

are 𝑁𝐿−1 candidate points, leading to 2
𝑁𝐿−1 possible partitions.

To reduce the search space and minimise the number of transmis-

sions across the network, we make two key observations. First,

since CNN final outputs are rather small, once execution is of-

floaded to the powerful remote server, there is no gain in having

two or more split points as this would incur in extra communica-

tion costs. Second, different layer splits have varying transmission

costs and compression potential. For example, activation layers

such as ReLU [54] cap negative values to zero, which means that

their output becomes more compressible [56, 60, 82] and they can

be more efficiently transferred by SPINN’s communication optimiser
(Section 3.6). Therefore, while SPINN’s design supports an arbitrary

number of split points and layers, in this work, we allow one split

point per CNN and reduce the candidate split points to ReLU layers.
Automatic Split Point Identification. To automatically de-

tect all candidate split points in the given CNN, the model split-

ter employs a dynamic analysis approach. This is performed by

first constructing the execution graph of the model in the target

framework (e.g. PyTorch), identifying all split points and the associ-

ated dependencies, and then applying SPINN’s partitioning scheme

to yield the final pruned split point space. The resulting set of

points defines the allowed partitions that can be selected by the

scheduler (Section 3.5).

Impact of Split Point. To investigate how the split point se-

lection affects the overall latency, we run multiple CNN splits

between a Nvidia Jetson Xavier client and a server (experimen-

tal setup detailed in Section 4). Figure 5 shows the breakdown of

ResNet-56’s inference times with CIFAR-100 over distinct network

conditions and client compute capabilities - u10W and 10W. Pack-

ing refers to the runtime of the communication optimiser module,

detailed in Section 3.6.

Based on the figure, we make two observations. First, different

split points yield varying trade-offs in client, server and transfer

time. For example, earlier splits execute more on the server, while

later ones execute more on-device but often with smaller transfer

requirements
4
. This indicates that SPINN’s scheduler can selectively

choose one to minimise any given runtime (e.g. device, server or
transfer), as required by the user. Second, dynamic conditions such

as the connectivity, and the device compute capabilities play an

important role in shaping the split point latency characteristics

illustrated in Figure 5. For example, a lower-end client (u10W)

or a loaded server would require longer to execute its allocated

split, while low bandwidth can increase the transfer time. This

indicates that it is hard to statically identify the best split point and

highlights the need for an informed partitioning that adapts to the

environmental conditions in order to meet the application-level

performance requirements.

3.4 Profiler
Given the varying trade-offs of different split points and confidence

thresholds, SPINN considers the client and server load, the network-
ing conditions and the expected accuracy in order to select the most

suitable configuration. To estimate this set of parameters, the pro-
filer (Figure 2 3 ) operates in two stages: i) offline and ii) run-time.

Offline stage: In the offline phase, the profiler performs two

kinds of measurements, device-independent and device-specific. The
former include CNN-specific metrics, such as 1) the size of data to

be transmitted for each candidate split and 2) the average accuracy

of the progressive CNN for different confidence thresholds. These

are measured only once prior to deployment. Next, the profiler

needs to obtain latencies estimates that are specific to each device.

To this end, the profiler measures the average execution time per

layer by passing the CNN through a calibration set – sampled from

the validation set of the target task. The results serve as the initial

latency and throughput estimates.

Run-time stage: At run time, the profiler refines its offline esti-

mates by regularly monitoring the device and server load, as well

as the connectivity conditions. To keep the profiler lightweight,

instead of adopting a more accurate but prohibitively expensive esti-

mator, we employ a 2-staged linear model to estimate the inference

latency on-device.

In the first step, the profiler measures the actual on-device ex-

ecution time up to the split point 𝑠 , denoted by 𝑇 real

⟨𝑠 ⟩ during each

inference. Next, it calculates a latency scaling factor 𝑆𝐹 as the ratio

between the actual time and the offline latency estimate up to the

split 𝑠 , i.e. 𝑆𝐹 =
𝑇
real⟨𝑠⟩

𝑇
offline⟨𝑠⟩

. As a second step, the profiler treats the

scaling factor as an indicator of the load of the client device, and

uses it to estimate the latency of all other candidate splits. Thus,

the latency of a different split 𝑠 ′ is estimated as 𝑆𝐹 · 𝑇 offline

⟨𝑠′⟩ .

4
Note that independently of the amount of transmitted data, there is always a network

latency overhead that must be amortised, which in the case of 4G, is quite significant.



Algorithm 1: Flow of dynamic scheduler upon invocation

Input: Space of candidate designs Σ
Prioritised hard constraints ⟨𝐶1,𝐶2, ...,𝐶𝑛 ⟩
Prioritised soft targets

〈
𝑂1,𝑂2, ...,𝑂 |M|

〉
Current network conditions 𝑛𝑒𝑡 = ⟨𝐿, 𝐵⟩
Current device and server loads 𝑙 {dev,server}

Profiler data 𝑝𝑟 𝑓

Output: Highest performing design 𝜎∗ =
〈
𝑠∗, 𝑡ℎ𝑟 ∗

conf

〉
1 𝑝𝑟 𝑓 ← UpdateTimings(𝑝𝑟 𝑓 , 𝑛𝑒𝑡 , 𝑙dev , 𝑙 server)

2 Σfeasible ← Σ
3 /* - - - Obtain feasible space based on hard constraints - - -*/
4 foreach𝐶𝑖 ∈ ⟨𝐶1,𝐶2, ...,𝐶𝑛 ⟩ do
5 Σfeasible ← RemoveInfeasiblePoints(𝑝𝑟 𝑓 ,𝐶𝑖 , Σ

feasible
)

6

↰

VecCompare(𝑝𝑟 𝑓 , Σfeasible(:,𝑀𝑖 ), 𝑜𝑝𝑖 , 𝑡ℎ𝑟𝑖) ∀𝑖 ∈ [1, 𝑛]
7 end
8 /* - - - Optimise user-defined metrics - Eq. (4) - - - */
9 𝜎∗ ← OptimiseUserMetrics(𝑝𝑟 𝑓 ,

〈
𝑂1,𝑂2, ...,𝑂 |M|

〉
, Σfeasible)

10

↰

VecMax/Min(𝑝𝑟 𝑓 , Σfeasible(:,𝑀𝑖 ), 𝑜𝑝𝑖) ∀𝑖 ∈ [1, |M |]

Similarly, to assess the server load, the remote endpoint’s com-

pute latency is optionally communicated back to the device, piggy-

backed with the CNN response when offloading. If the server does

not communicate back latencies for preserving the privacy of the

provider, these can be coarsely estimated as 𝑇 server

⟨𝑠 ⟩ = 𝑇
response

⟨𝑠,𝑒 ⟩ −(
𝐿 + 𝐷response

𝐵

)
, where 𝑇

response

⟨𝑠 ⟩ is the total time for the server to

respond with the result for split point 𝑠 and exit 𝑒 , 𝐷response is the

size of transferred data and 𝐵, 𝐿 are the instantaneous network

bandwidth and latency respectively. We periodically offload to the

server without stopping the local execution to reassess when the

server transitions from “overloaded” to “accepting requests”.

To estimate the instantaneous network transfer latency, the pro-
filer employs a run-time monitoring mechanism of the bandwidth

𝐵 and latency 𝐿 experienced by the device [15]. The overall transfer

time is 𝐿 + 𝐷⟨𝑠⟩
𝐵

, where 𝐷 ⟨𝑠 ⟩ is the amount of data to be transferred

given split 𝑠 . As the network conditions change, the monitoring

module refines its estimates by means of two moving averages:

a real-time estimation (𝐿rt, 𝐵rt) and a historical moving average

(𝐿hist, 𝐵hist). The former is updated and used only when transfers

have occurred within the last minutes. If no such information exists,

the historical estimates for the same network type are used.

3.5 Dynamic Scheduler
Given the output of the profiler, the dynamic scheduler (Figure 2 4 )

is responsible for distributing the computation between device and

cloud, and deciding the early-exit policy of the progressive inference

network. Its goal is to yield the highest performing configuration

that satisfies the app requirements. To enable the support of realis-

tic multi-criteria SLAs, the scheduler incorporates a combination

of hard constraints (e.g. a strict inference latency deadline of 100

ms) and soft targets (e.g. minimise cost on the device side). Inter-

nally, we capture these under a multi-objective optimisation (MOO)

formulation. The current set of metrics is defined as

M = {𝑙𝑎𝑡𝑒𝑛𝑐𝑦, 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡, 𝑠𝑒𝑟 𝑣𝑒𝑟 𝑐𝑜𝑠𝑡,𝑑𝑒𝑣𝑖𝑐𝑒 𝑐𝑜𝑠𝑡, 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 }
In SPINN, we interpret cloud and device cost as the execution time

on the respective side. The defined metrics setM, together with the

associated constraints, can cover a wide range of use-cases, based

on the relative importance between the metrics for the target task.

Formally, we define a hard constraint as𝐶 = ⟨𝑀,𝑜𝑝, 𝑡ℎ𝑟 ⟩where𝑀 ∈
M is a metric, 𝑜𝑝 is an operator, e.g. ≤, and 𝑡ℎ𝑟 is a threshold value.

With respect to soft optimisation targets, we define them for-

mally as𝑂 = ⟨𝑀,𝑚𝑖𝑛/𝑚𝑎𝑥/𝑣𝑎𝑙𝑢𝑒⟩ where a given metric𝑀 ∈ M is

either maximised, minimised or as close as possible to a desirable

value. To enable the user to specify the importance of each met-

ric, we employ a multi-objective lexicographic formulation [52],

shown in Eq. (4).

min
𝜎

𝑀𝑖 (𝜎), s.t. 𝑀𝑗 (𝜎) ≤ 𝑀𝑗 (𝜎∗𝑗 ) (4)

𝑗 = 1, 2, ..., 𝑖 − 1 , 𝑖 > 1 , 𝑖 = 1, 2, ..., |M|
where 𝜎 represents a design point,𝑀𝑖 ∈

〈
𝑀1, 𝑀2, ..., 𝑀 |M |

〉
is the

i-th metric in the ordered tuple of soft targets, 𝑖 is a metric’s position

in the importance sequence and𝑀𝑗 (𝜎∗𝑗 ) represents the optimum of

the j-th metric, found in the j-th iteration. Under this formulation,

the user ranks the metrics in order of importance as required by

the target use-case.

Algorithm 1 presents the scheduler’s processing flow. As a first

step, the scheduler uses the estimated network latency and band-

width, and device and server loads to update the profiler parameters

(line 1), including the attainable latency and throughput, and device

and server cost for each candidate configuration. Next, all infeasible

solutions are discarded based on the supplied hard constraints (lines

4-7); given an ordered tuple of prioritised constraints ⟨𝐶1,𝐶2, ...,𝐶𝑛⟩,
the scheduler iteratively eliminates all configurations 𝜎=⟨𝑠, 𝑡ℎ𝑟conf⟩
that violate them in the given order, where 𝑠 and 𝑡ℎ𝑟conf represent

the associated split point and confidence threshold respectively. In

case there is no configuration to satisfy all the constraints up to i+1,

the scheduler adopts a best-effort strategy by keeping the solutions

that comply with up to the i-th constraint and treating the remain-

ing 𝑛-𝑖 constraints as soft targets. Finally, the scheduler performs a

lexicographic optimisation of the user-prioritised soft targets (lines

9-10). To determine the highest performing configuration 𝜎∗, the
scheduler solves a sequence of |M| single-objective optimisation

problems, i.e. one for each𝑀∈
〈
𝑀1, 𝑀2, ..., 𝑀 |M |

〉
(Eq. (4)).

Deployment. Upon deployment, the scheduler is run on the

client side, since most relevant information resides on-device. In a

multi-client setting, this setup is further reinforced by the fact that

each client device decides independently on its offloading parame-

ters. However, to be deployable without throttling the resources of

the target mobile platform, the scheduler has to yield low resource

utilisation at run time. To this end, we vectorise the comparison,

maximisation and minimisation operations (lines 5-6 and 9-10 in Al-

gorithm 1) to utilise the SIMD instructions of the target mobile CPU

(e.g. the NEON instructions on ARM-based cores) and minimise the

scheduler’s runtime.

At run time, although the overhead of the scheduler is relatively

low, SPINN only re-evaluates the candidate configurations when

the outputs of the profiler change by more than a predefined thresh-

old. For highly transient workloads, we can switch from a moving

average to an exponential back-off threshold model for mitigating

too many scheduler calls. The scheduler overhead and the tuning

of the invocation frequency is discussed in Section 4.3.2.

The server – or HA proxy
5
[70] in multi-server architectures –

can admit and schedule requests on the remote side to balance the

workload and minimise inference latency, maximise throughput

or minimise the overall cost by dynamically scaling down unused

5
High-Availability proxy for load balancing & fault tolerance in data centres.



resources.We consider these optimisations cloud-specific and out of

the scope of this paper. As a result, in our experiments we account

for a single server always spinning and having the model resident

to its memory. Nevertheless, in a typical deployment, we would

envision a caching proxy serving themodels with RDMA to the CPU

or GPU of the end server, in a virtualised or serverless environment

so as to tackle the cold-start problem [57, 77]. Furthermore, to avoid

oscillations (flapping) of computation between the deployed devices

and the available servers, techniques used for data-center traffic

flapping are employed [5].

3.6 CNN Communication Optimiser
CNN layers often produce large volumes of intermediate data which

come with a high penalty in terms of network transfer. A key

enabler in alleviating the communication bottleneck in SPINN is the
communication optimiser module (CNN-CO) (Figure 2 5 ). CNN-CO
comprises two stages. In the first stage, we exploit the resilience of

CNNs to low-precision representation [14, 16, 28, 38] and lower the

data precision from 32-bit floating-point down to 8-bit fixed-point

through linear quantisation [28, 53]. By reducing the bitwidth of

only the data to be transferred, our scheme allows the transfer size

to be substantially lower without significant impact on the accuracy

of the subsequent classifiers (i.e. <0.65 percentage point drop across
all exits of the examined CNNs). Our scheme differs from both i)

weights-only reduction [17, 67, 86], which minimises the model size

rather than activations’ size and ii) all-layers quantisation [14, 16,

24, 28] which requires complex techniques, such as quantisation-

aware training [24, 28] or a re-training step [14, 16], to recover the

accuracy drop due to the precision reduction across all layers.

The second stage exploits the observation that activation data

are amenable to compression. A significant fraction of activations

are zero-valued, meaning that they are sparse and highly com-

pressible. As noted by prior works [56, 60, 82], this sparsity of

activations is due to the extensive use of the ReLU layer that fol-

lows the majority of layers in modern CNNs. In CNN-CO, sparsity
is further magnified due to the reduced precision. In this respect,

CNN-CO leverages the sparsity of the 8-bit data by means of an LZ4
compressor with bit shuffling.

At run time, SPINN predicts whether the compression cost will

outweigh its benefits by comparing the estimated CNN-CO runtime

to the transfer time savings. If CNN-CO’s overhead is amortised,

SPINN queues offloading requests’ data to the CNN-CO, with dedi-

cated threads for each of the two stages, before transmission. Upon

reception at the remote end, the data are decompressed and cast

back to the original precision to continue inference. The overhead

is shown as packing in Figure 5 for non-progressive models.

3.7 Distributed Execution Engine
In popular Deep Learning frameworks, such as TensorFlow [1] and

PyTorch [58], layers are represented bymodules and data in the form
of multi-dimensional matrices, called tensors. To split and offload

computation, SPINN modifies CNN layer’s operations behind the

scenes. To achieve this, it intercepts module and tensor operations

by replacing their functions with a custom wrapper using Python’s

function decorators.

CNN Comms
Optimiser

Early exit 1 Early exit 2 Early exit 6

Input
Output

1 2 3 4 5

6 7 8

9

Client Server

Network

10 11 12

Conv

ReLU

BatchNorm

Tensor: Interception
Injection

Linear

Figure 6: Offloading a progressive ResNet block.

Figure 6 focuses on an instance of an example ResNet block.

SPINN attributes IDs to each layer in a trace-based manner, by

executing the network and using the layer’s execution order as a

sequence identifier.
6 SPINN uses these IDs to build an execution

graph in the form of a directed acyclic graph (DAG), with nodes

representing tensor operations and edges the tensor flows among

them [1, 62, 75]. This is then used to detect the dependencies across

partitions. To achieve this, Python’s dynamic instance attribute

registration is used to taint tensors andmonitor their flow through

the network. With Figure 6 as a reference, SPINN’s custom wrapper

(Figure 2 6 ) performs the following operations:

Normal execution:When a layer is to be run locally, the wrap-

per calls the original function it replaced. In Figure 6, layers 1 to

8 execute normally on-device, while layers from 9 until the end

execute normally on the server side.

Offload execution:When a layer is selected as a partition point

(layer 9), instead of executing the original computation on the client,

the wrapper queues an offloading request to be transmitted. This

request contains the inputs (layer 5’s output) and subsequent layer

dependencies (input of skip connection). Furthermore, the inference

and the data transfer are decoupled in two separate threads, to allow

for pipelining of data transfer and next frame processing.

Resume execution: Upon receiving an offloading request, the

inputs and dependencies are injected in the respective layers (layer 9

and add operation) and normal execution is resumed on the remote

side. When the server concludes execution, the results are sent back

in a parallel thread.

Early exit:When an intermediate classifier (i.e. early exit) is exe-
cuted, the wrapper evaluates its prediction confidence (Eq. (1)). If it

is above the provided 𝑡ℎ𝑟 conf, execution terminates early, returning

the current prediction (Eq. (2)).

Since the premise of our system is to always have at least one us-

able result on the client side, we continue the computation on-device

even past the split layer, until the next early exit is encountered.

Furthermore, to avoid wasteful data transmission and redundant

computation, if a client-side early exit covers the latency SLA and

satisfies the selected 𝑡ℎ𝑟conf, the client sends a termination signal

to the remote worker to cancel the rest of the inference. If remote

execution has not started yet, SPINN does not offload at all.

4 EVALUATION
This section presents the effectiveness of SPINN in significantly im-

proving the performance of mobile CNN inference by examining its

core components and comparing with the currently standard device-

6
Despite the existence of branches, CNN execution tends to be parallelised across data

rather than layers. Hence, the numbering is deterministic.



Platform CPU Clock Freq. Memory GPU

Server 2× Intel Xeon Gold 6130 2.10 GHz 128 GB GTX1080Ti

Jetson AGX Carmel ARMv8.2 2.26 GHz 16 GB 512-core Volta

Table 1: Specifications of evaluated platforms.

and cloud-only implementations and state-of-the-art collaborative

inference systems.

4.1 Experimental Setup
For our experiments, we used a powerful computer as the server

and an Nvidia Jetson Xavier AGX as the client (Table 1). Specifi-

cally for Jetson, we tested against three different power profiles to

emulate end-devices with different compute capabilities:
7
1) 30W

(full power), 2) 10W (low power), 3) underclocked 10W (u10W). Fur-

thermore, to study the effect of limited computation capacity (e.g.
high-load server), we emulated the load by linearly scaling up the

CNN computation times on the server side. We simulated the net-

work conditions of offloading by using the average bandwidth and

latency across national carriers [26, 27], for 3G, 4G and 5G mobile

networks. For local-area connections (Gigabit Ethernet 802.3, WiFi-

5 802.11ac), we used the nominal speeds of the protocol. We have

developed SPINN on top of PyTorch (1.1.0) and experimented with

four models, altered from torchvision (0.3.0) to include early exits or

to reflect the CIFAR-specific architectural changes. We evaluated

SPINN using: ResNet-50 and -56 [20], VGG16 [63], MobileNetV2 [61]

and Inception-v3 [69]. Unless stated otherwise, each benchmark

was run 50 times to obtain the average latency.

Datasets and Training. We evaluated SPINN on two datasets,

namely CIFAR-100 [41] and ImageNet (ILSVRC2012) [10]. The for-

mer contains 50k training and 10k test images of resolution 32×32,
each corresponding to one of 100 labels. The latter is significantly

larger, with 1.2m training and 50k test images of 300×300 and 1000

labels. We used the preprocessing steps described in each model’s

implementation, such as scaling and cropping the input image, sto-

chastic image flip (𝑝 = 0.5) and colour channel normalisation. After
converting these models to progressive early-exit networks, we

trained them jointly from scratch end-to-end, with the “overthink"

cost function (Section 3.2). We used the authors’ training hyper-

parameters, except for MobileNetV2, where we utilised SGD with

learning rate of 0.05 and cosine learning rate scheduling, due to

convergence issues. We trained the networks for 300 epochs on

CIFAR-100 and 90 epochs on ImageNet.

4.2 Performance Comparison
This subsection presents a performance comparison of SPINN with:

1) the two state-of-the-art CNN offloading systems Neurosurgeon
[34] and Edgent [46] (Section 2); 2) the status-quo cloud- and device-
only baselines; and 3) a non-progressive ablated variant of SPINN.

4.2.1 Throughput Maximisation. Here, we assess SPINN’s infer-
ence throughput across varying network conditions. For these ex-

periments, the SPINN scheduler’s objectives were set to maximise

throughput with up to 1 percentage point (pp) tolerance in accuracy

drop with respect to the CNN’s last exit.

7
We are adjusting the TDP and clock frequency of the CPU and GPU cores, effectively

emulating different tiers of devices, ranging from high-end embedded devices to

mid-tier smartphones.
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Figure 7: Achieved throughput for various
⟨model, device, dataset⟩ setups vs. network speed.

Figure 7 shows the achieved inference throughput for varying

network speeds. On-device execution yields the same throughput

independently of the network variation, but is constrained by the

processing power of the client device. Server-only execution follows

the trajectory of the available bandwidth. Edgent always executes a
part of the CNN (up to the exit that satisfies the 1pp accuracy toler-

ance) irrespective of the network conditions. As a result, it follows

a similar trajectory to server-only but achieves higher throughput

due to executing only part of the model. Neurosurgeon demon-

strates a more polarised behaviour; under constrained connectivity

it executes the whole model on-device, whereas as bandwidth in-

creases it switches to offloading all computation as it results in

higher throughput. The ablated variant of SPINN (i.e. without early
exits) largely follows the behaviour of Neurosurgeon at the two

extremes of the bandwidth while in the middle range, it is able

to achieve higher throughput by offloading earlier due to CNN-CO
compressing the transferred data.

The end-to-end performance achieved by SPINN delivers the

highest throughput across all setups, achieving a speedup of up

to 83% and 52% over Neurosurgeon and Edgent, respectively. This
can be attributed to our bandwidth- and data-locality-aware sched-

uler choices on the early-exit policy and partition point. In low

bandwidths, SPINN selects device-only execution, outperforming all

other on-device designs due to its early-exiting mechanism, tuned

by the scheduler module. In the mid-range, the CNN-CO module

enables SPINN to better utilise the available bandwidth and start of-

floading earlier on, outperforming both Edgent and Neurosurgeon.
In high-bandwidth settings, our system surpasses the performance

of all other designs by exploiting its optimised early-exiting scheme.

Specifically, compared to Edgent, SPINN takes advantage of the

input’s classification difficulty to exit early, whereas the latter only

selects an intermediate exit to uniformly classify all incoming sam-

ples. Moreover, in contrast with Edgent’s strategy to always trans-

mit the input to the remote endpoint, we exploit the fact that data

already reside on the device and avoid the wasteful data transfers.

4.2.2 Server-Load Variation. To investigate the performance of

SPINN under various server-side loads, we measured the inference
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Figure 8: Effect of server slowdown on ResNet.

throughput of SPINN against baselines when varying the load of

the remote end, with 1pp of accuracy drop tolerance. This is accom-

plished by linearly scaling the latency of the server execution by a

slowdown factor (i.e. a factor of 2 means the server is 2× slower).
Figure 8 presents the throughput achieved by each approach under

various server-side loads, with the Jetson configured at the 10W

profile and the network speed in the WiFi-5 range (500 Mbps).

With low server load (left of the x-axis), the examined systems

demonstrate a similar trend to the high-bandwidth performance of

Figure 7. As the server becomes more loaded (i.e. towards the right-
hand side), performance deteriorates, except for the case of device-

only execution which is invariant to the server load. On the one

hand, although its attainable throughput reduces, Neurosurgeon
adapts its policy based on the server utilisation and gradually ex-

ecutes a greater fraction of the CNN on the client side. On the

other hand, Edgent’s throughput deteriorates more rapidly and

even reaches below the device-only execution under high server

load, since its run-time mechanism does not consider the varying

server load. Instead, by adaptively optimising both the split point

and the early-exit policy, SPINN’s scheduler manages to adapt the

overall execution based on the server-side load, leading to through-

put gains between 1.18-1.99× (1.57× geo. mean) and 1.15-3.09×
(1.61× geo. mean) over Neurosurgeon and Edgent respectively.

4.2.3 Case Study: Latency-driven SLAs at minimal server cost. To
assess SPINN’s performance under deadlines, we target the scenario

where a service provider aims to deploy a CNN-based application

that meets strict latency SLAs at maximum accuracy and minimal

server-side cost. In this setting, we compare against Neurosurgeon8

and Edgent, targeting MobileNetV2 and ResNet-56 over 4G. Figure

9 shows the server computation time and accuracy achieved by each

system for two device profiles with different compute capabilities -

u10W and 10W. Latency SLAs are represented as a percentage of

the device-only runtime of the original CNN (i.e. 20% SLA means

that the target is 5× less latency than on-device execution, requiring
early exiting and/or server support).

For the low-end device (u10W) and strict latency deadlines,

SPINN offloads as much as possible to the cloud as it allows reaching

faster a later exit in the network, hence increasing the accuracy.

As the SLA loosens (reaching more than 40% of the on-device la-

tency), SPINN starts to gradually execute more and more locally. In

contrast, Edgent and Neurosurgeon achieve similar accuracy but

with up to 4.9× and 6.8× higher server load. On average across all

targets, SPINN reduces Edgent and Neurosurgeon server times by

8
It should be noted that Neurosurgeon maintains the accuracy of the original CNN.
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Figure 9: Server time (left) and accuracy (right) of SPINN
vs. Neurosurgeon and Edgent for different latency SLAs and
client compute power (u10W and 10W). The SLA is ex-
pressed as a percentage of the on-device latency.

68.64% and 82.5% (60.3% and 83.6% geo. mean), respectively, due to

its flexible multi-objective scheduler. Instead, Neurosurgeon can

only optimise for overall latency and cannot trade off accuracy to

meet the deadline (e.g. for 20% SLA on ResNet-56) while Edgent
cannot account for server-time minimisation and accuracy drop

constraints.

The situation is different for the more powerful device (10W).

With the device being faster, the SLA targets become much stricter.

Therefore, we observe that SPINN and Edgent can still meet a la-

tency constraint as low as 20% and 30% of the local execution time

for ResNet-56 and MobileNetV2 respectively. In contrast, without

progressive inference, it is impossible for Neurosurgeon to achieve
inference latency below 60% of on-device execution across both

CNNs. In this context, SPINN is able to trade off accuracy in order

to meet stricter SLAs, but also improve its attainable accuracy as

the latency constraints are relaxed.

For looser latency deadlines (target larger than 50% of the on-

device latency), SPINN achieves accuracy gains of 17.3% and 20.7%

over Edgent for ResNet-56 and MobileNetV2, respectively. The rea-

son behind this is twofold. First, when offloading, Edgent starts

the computation on the server side, increasing the communica-

tion latency overhead. Instead, SPINN’s client-to-server offloading

strategy and compression significantly reduces the communication

latency overhead. Second, due to Edgent’s unnormalised cost func-

tion (i.e. max

(
1

𝑙𝑎𝑡
+ 𝑎𝑐𝑐

)
), the throughput’s reward dominates the

accuracy gain, leading to always selecting the first early-exit sub-

network and executing it locally. In contrast, SPINN’s scheduler’s
multi-criteria design is able to capture accuracy, server time and

latency constraints to yield an optimised deployment. Hence, sim-

ilarly to the slower device, SPINN successfully exploits the server

resources to boost accuracy under latency constraints, while it can

reach up to pure on-device execution for loose deadlines.
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Figure 10: SPINN scheduler’s behaviour on real network
provider trace.

4.3 Runtime Overhead and Efficiency
4.3.1 Deployment Overhead. By evaluating across our examined

CNNs and datasets on the CPU of Jetson, the scheduler executes in

max 14 ms (11 ms geo. mean). This time includes the cost of read-

ing the profiler parameters, updating the monitored metrics, and

searching for and returning the selected configuration. Moreover,

SPINN’s memory consumption is in the order of a few KB (i.e. <1% of

Jetson’s RAM). These costs are amortised over multiple inferences,

as the scheduler is invoked only on significant context changes. We

discuss the selection of such parameters in the following section.

4.3.2 Network Variation. To assess the responsiveness of SPINN
in adapting to dynamic network conditions, we targeted a real

bandwidth trace from a Belgian ISP. The trace contains time series

of network bandwidth variability during different user activities.

In this setup, SPINN executes the ImageNet-trained Inception-v3

with Jetson-u10W as the client under the varying bandwidth emu-

lated by the Belgium 4G/LTE logs. The scheduler is configured to

maximise both throughput and accuracy. Figure 10 (top) shows an

example bandwidth trace from a moving bus followed by walking.

Figure 10 (bottom) shows SPINN’s achieved inference throughput

under the changing network quality. The associated scheduler de-

cisions are depicted in Figure 10 (middle).

At low bandwidth (<5 Mbps), SPINN falls back to device-only

execution. In these cases, the scheduler adopts a less conserva-

tive early-exit policy by lowering the confidence threshold. In this

manner, it allows more samples to exit earlier, compensating for

the client’s low processing power. Nonetheless, the impact on ac-

curacy remains minimal (<1%) for the selected early-exit policies

by the scheduler (𝑡ℎ𝑟conf ∈ [0.6, 1.0]), as illustrated in Figure 3 for

Inception-v3 on ImageNet. At the other end, high bandwidths re-

sult in selecting an earlier split point and thus achieving up to 7×
more inf/sec over pure on-device execution. Finally, the similar

trajectories of the top and bottom figure suggest that our scheduler

can adapt the system to the running conditions, without having to

be continuously invoked.
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Figure 11: Energy consumption of SPINN vs. baselines.

Overall, we observe that small bandwidth changes do not cause

significant alterations to the split and early-exit strategies. By em-

ploying an averaging historical window of three values and a dif-

ference threshold of 5%, the scheduler is invoked 1/3 of the total
bandwidth changes across traces.

4.4 Energy Consumption
Figure 11 shows the breakdown of dominant energy consumption

across the client device subsystems. We measured energy consump-

tion over 1000 inferences from the validation set and offloading

over UK’s Three Broadband’s 4G network with a Huawei E3372

USB adapter. We measured the power of Jetson (CPU, GPU) from its

integrated probes and the transmission energy with the Monsoon

AAA10F power monitor.

Traversing the horizontal axis left-to-right, we first see device-

only execution without and with early-exits, where the local pro-

cessing dominates the total energy consumption. The latter shows

benefits due to samples exiting early from the network. Next, we

showcase the consumption breakdown of three different ⟨𝑠𝑝𝑙𝑖𝑡, 𝑡ℎ𝑟conf⟩
configurations. The first two configurations demonstrate compara-

ble energy consumption with the device-only execution without

early exits. On the contrary, a bad configuration requires an exces-

sively large transfer size, leading to large compression and transfer

energy overheads. Last, the energy consumption when fully offload-

ing is dominated by the network transfer.

Across configurations, we witness a 5× difference in energy

consumption across different inference setups. While device-only

execution yields the lowest energy footprint per sample, it is also

the slowest. Our scheduler is able to yield deployments that are

significantly more energy efficient than full offloading (4.2×) and
on par with on-device execution (0.76 − 1.12×), while delivering
significantly faster end-to-end processing. Finally, with different

configurations varying both in energy and performance, the deci-

sion space is amenable to energy-driven optimisation by adding

energy as a scheduler optimisation metric.

4.5 Constrained Availability Robustness
Next we evaluate SPINN’s robustness under constrained availability
of the remote end such as network timeouts, disconnections and

server failures. More specifically, we investigate 1) the achieved

accuracy across various failure rates and 2) the latency improvement

over conventional systems enhanced with an error-control policy.

In these experiments, we fix the confidence threshold of three

models (Inception-v3, ResNet-56 and ResNet-50) to a value of 0.8
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Figure 12: Comparison of the average accuracy under uncer-
tain server availability. The shaded area indicates attained
accuracies under a probability distribution.
and emulate variable failure rates by sampling from a random

distribution across the validation set.

Accuracy comparison: For this experiment (Figure 12), we

compare SPINN at different network split points (solid colours)

against a non-progressive baseline (dashed line). Under failure con-

ditions, the baseline unavoidably misclassifies the result as there is

no usable result locally on-device. However, SPINN makes it possi-

ble to acquire the most confident local result up to the split point,

when the server is unavailable.

As shown in Figure 12, the baseline quickly drops in accuracy as

the failure rate increases. This is not the case with SPINN, which
manages to maintain a minimal accuracy drop. Specifically, we wit-

ness drops ranging in [0, 5.75%] for CIFAR-100 and [0.46%, 33%] for
ImageΝet, when the equivalent drop of the baseline is [11.56%, 44.1%]
and [9.25%, 44.34%], respectively. As expected, faster devices are
able to execute locally a larger part of the model (exit later) while

meeting their SLA exhibit the smallest impact under failure, as

depicted in the progressive variants of the two models.

Latency comparison: In this scenario, we compare SPINN against
a single-exit offloaded variant of the same networks. This time

instead of simply failing the inference when the remote end is

unavailable, we allow for retransmission with exponential back-
off, a common behaviour of distributed systems to avoid channel

contention. When a sample fails under the respective probability

distribution, the result gets retransmitted. If the same sample fails

again, the client waits double the time and retransmits, until it suc-

ceeds. Here, we assume Jetson-10W offloads to our server over 4G

and varying failure probability (𝑃fail ∈ {0.1, 0.25, 0.5}). The initial
retransmission latency is 20 ms. We ran each experiment three

times and report the mean and standard deviation of the latencies.

As depicted in Figure 13, the non-progressive baseline follows

a trajectory of increasing latency as the failure probability gets

higher, due to the additional back-off latency each time a sample

fails. While the impact on the average latency for both networks

going from 𝑃fail = 0.1 to 𝑃fail = 0.25 is gradual, at 3.9%, 5.8% and

4.7% for Inception-v3, ResNet-56 and ResNet-50 respectively, the

jump from 𝑃fail = 0.25 to 𝑃fail = 0.5 is much more dramatic, at

52.9%, 91% and 118%. The variance at 𝑃fail = 0.5 is also noticeably

higher, compared to previous values, attributed to higher number

of retransmissions and thus higher discrepancies across different

runs. We should note that despite the considerably higher latency

of the non-progressive baseline, its accuracy can be higher, since all

samples – whether re-transmitted or not – exit at the final classifier.

Last, we also notice a slight reduction in the average latency of

SPINN’s models as 𝑃fail increases. This is a result of more samples
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Figure 13: Comparison of average latency under uncertain
server availability.

early-exiting in the network, as the server becomes unavailable

more often.

To sum up, these two results demonstrate that SPINN can perform
sufficiently, in terms of accuracy and latency, even when the remote

end remains unresponsive, by falling back to results of local exits.

Compared to other systems, as the probability of failure when

offloading to the server increases, there is a gradual degradation of

the quality of service, instead of catastrophic unresponsiveness of

the application.

5 DISCUSSION
SPINN and the current ML landscape. The status-quo deploy-

ment process of CNNs encompasses the maintenance of two mod-

els: a large, highly accurate model on the cloud and a compact,

lower-accuracy one on the device. However, this approach comes

with significant deployment overheads. First, from a development

time perspective, the two-model approach results in two time- and

resource-expensive stages. In the first stage, the large model is de-

signed and trained requiring multiple GPU-hours. In the second

stage, the large model is compressed through various techniques

in order to obtain its lightweight counterpart, with the selection

and tuning of the compression method being a difficult task in

itself. Furthermore, typically, to gain back the accuracy loss due to

compression, the lightweight model has to be fine-tuned through a

number of additional training steps.

With regards to the lightweight compressed networks, SPINN
is orthogonal to these techniques and hence a compressed model

can be combined with SPINN to obtain further gains. Given a com-

pressed model, our system would proceed to derive a progressive

inference variant with early exits and deploy the network with a

tailored implementation. For use-cases where pre-trained models

are employed, SPINN can also smoothly be adopted by modifying

its training scheme (Section 3.2) so that the pre-trained backbone

is frozen during training and only the early exits are updated.

Nonetheless, with SPINN we also enable an alternative paradigm

that alleviates the main limitations of the current practice. SPINN
requires a single network design step and a single training process

- which trains both the backbone network and its early exits. Upon

deployment, the model’s execution is adaptively tuned based on

the multiple target objectives, the environmental conditions and

the device and cloud load. In this manner, SPINN enables a highly
customised deployment which is dynamically and efficiently ad-

justed to sustain its performance in mobile settings. This approach

is further supported by the ML community’s growing number of

works on progressive networks [23, 35, 48, 72, 81, 83, 84] which can



be directly targeted by SPINN to yield an optimised deployment on

mobile platforms.

Limitations and futurework.Despite the challenges addressed
by SPINN, our prototype system has certain limitations. First, the

scheduler does not explicitly optimise for energy or memory con-

sumption of the client. The energy consumption could be integrated

as another objective in the MOO solver of the scheduler, while

memory footprint could be minimised by only loading part of the

model in memory and always offloading the rest. Moreover, while

SPINN supports splitting at any given layer, we limit the candi-

date split points of each network to the outputs of ReLU layers,

due to their high compressibility (Section 3.3). Although offload-

ing could happen at sub-layer, filter-level granularity, this would

impose extra overhead on the scheduler due to the significantly

larger search space.

Our workflow also assumes the model to be available at both the

client and server side. While cloud resources are often dedicated

to specific applications, edge resources tend to present locality

challenges. To handle these, we could extend SPINN to provide

incremental offloading [29] and cache popular functionality [76]

closer to its users. In the future, we intend to explore multi-client

settings and simultaneous asynchronous inferences on a single

memory copy of the model, as well as targeting regression tasks

and recurrent neural networks.

6 CONCLUSION
In this paper, we present SPINN, a distributed progressive inference
engine that addresses the challenge of partitioning CNN inference

across device-server setups. Through a run-time scheduler that

jointly tunes the early-exit policy and the partitioning scheme, the

proposed system supports complex performance goals in highly

dynamic environments while simultaneously guaranteeing the ro-

bust operation of the end system. By employing an efficient multi-

objective optimisation approach and a CNN-specific communica-

tion optimiser, SPINN is able to deliver higher performance over the

state-of-the-art systems across diverse settings, without sacrificing

the overall system’s accuracy and availability.
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