
56

Toolflows for Mapping Convolutional Neural Networks

on FPGAs: A Survey and Future Directions

STYLIANOS I. VENIERIS, ALEXANDROS KOURIS, and CHRISTOS-SAVVAS BOUGANIS,

Imperial College London

In the past decade, Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance

in various Artificial Intelligence tasks. To accelerate the experimentation and development of CNNs, sev-

eral software frameworks have been released, primarily targeting power-hungry CPUs and GPUs. In this

context, reconfigurable hardware in the form of FPGAs constitutes a potential alternative platform that can

be integrated in the existing deep-learning ecosystem to provide a tunable balance between performance,

power consumption, and programmability. In this article, a survey of the existing CNN-to-FPGA toolflows is

presented, comprising a comparative study of their key characteristics, which include the supported applica-

tions, architectural choices, design space exploration methods, and achieved performance. Moreover, major

challenges and objectives introduced by the latest trends in CNN algorithmic research are identified and pre-

sented. Finally, a uniform evaluation methodology is proposed, aiming at the comprehensive, complete, and

in-depth evaluation of CNN-to-FPGA toolflows.

CCS Concepts: • General and reference → Surveys and overviews; • Computing methodologies →

Neural networks; • Hardware → Reconfigurable logic and FPGAs; Electronic design automation;

Additional Key Words and Phrases: Convolutional neural networks, FPGA toolflows, deep learning

ACM Reference format:

Stylianos I. Venieris, Alexandros Kouris, and Christos-Savvas Bouganis. 2018. Toolflows for Mapping Con-

volutional Neural Networks on FPGAs: A Survey and Future Directions. ACM Comput. Surv. 51, 3, Article 56

(June 2018), 39 pages.

https://doi.org/10.1145/3186332

1 INTRODUCTION

Convolutional Neural Networks (CNNs) [47] have demonstrated remarkable performance in Ar-

tificial Intelligence (AI) tasks. Being able to achieve high accuracy and frequently outperform tra-

ditional AI approaches, CNNs have been employed in a vast range of applications over the past

decade, from object detection [53, 72] and classification [78, 82] to drone navigation [20] and au-

tonomous driving [7, 11]. While becoming the state-of-the-art algorithm in AI fields such as ma-

chine vision, CNNs are challenged to deal with tasks of continuously increasing complexity. This

The support of the EPSRC Centre for Doctoral Training in High Performance Embedded and Distributed Systems (HiPEDS,

Grant Reference EP/L016796/1) is gratefully acknowledged.

Authors’ addresses: S. I. Venieris, A. Kouris, and C.-S. Bouganis, Department of Electrical and Electronic Engineering,

Imperial College London, SW7 2AZ, London, UK; emails: {stylianos.venieris10, a.kouris16, christos-savvas.bouganis}@

imperial.ac.uk.

This work is licensed under a Creative Commons Attribution International 4.0 License.

2018 Copyright is held by the owner/author(s).

ACM 0360-0300/2018/06-ART56 $15.00

https://doi.org/10.1145/3186332

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

https://doi.org/10.1145/3186332
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3186332

56:2 S. I. Venieris et al.

leads to the design of deeper, more expressive networks at the expense of an increase in compu-

tational and memory requirements.

Several software libraries and frameworks have been developed to facilitate the deep learning

community with the fast development and high-performance execution of CNNs. Toolflows,

such as Caffe,1 Torch,2 and Theano,3 and more recently Caffe2,4 PyTorch,5 TensorFlow,6 MXNet,7

CoreML,8 CNTK,9 and TensorRT,10 aim to increase the productivity of CNN developers by

providing high-level APIs together with high-performance execution of models on power-costly

multi-core CPUs, GPUs, and DSPs, or on specialized ASICs [42]. In this context, FPGAs stand

as a promising alternative target platform that can bridge the gap between power-hungry

programmable architectures and fixed-function power-efficient ASICs. The reconfiguration

capabilities of FPGAs could allow the generation of high-performance, low-power hardware

mappings of CNNs that can be configured to meet system-level requirements such as throughput,

latency, and power in diverse environments, from embedded systems to data centres.

In the past few years, High-Level Synthesis (HLS) tools have demonstrated considerable

progress in generating FPGA-based hardware designs from a high level of abstraction [39]. Ex-

isting tools such as Xilinx’s Vivado HLS, Intel FPGA OpenCL SDK, Maxeler’s MaxCompiler, and

LegUp [8] employ commonly used programming languages such as C, C++, OpenCL, and Java to

facilitate the development of functionally correct hardware designs. Nevertheless, the existing HLS

tools aim to yield an efficient design based on the mapping and scheduling of low-level primitive

operations, leading to a large design space that does not take into account the inherent structure

of the application domain. CNN workloads comprise a well-defined structure consisting of lay-

ers, with each layer having a predefined parameterization. The highly structured nature of CNN

workloads enables the development of automated domain-specific frameworks that are tailored to

CNNs. Such design tools could represent design points along the most important dimensions of

CNNs, by capturing crucial application-level parameters, such as the topology of the CNN and the

types and configurations of the layers, and map them to architectural parameters.

Currently, various systematic approaches toward the direction of automated mapping of CNNs

to FPGAs have been presented. Table 1 lists the published CNN-to-FPGA toolflows in chronologi-

cal order. Using the proposed frameworks, an optimized FPGA-based accelerator can be generated,

given a CNN-FPGA pair. The integration of this class of accelerator generators in the existing deep-

learning software frameworks would enable the user community to obtain customized hardware

implementations of CNNs, without requiring any hardware design expertise, and thus would en-

hance the integrability of FPGAs within the deep learning ecosystem.

In this article, a survey of the various CNN-to-FPGA toolflows is presented. For this work, we

consider as a toolflow any developed software that performs direct mapping of any input high-

level description of a CNN to a hardware architecture that implements the inference computations

of the network, under input-specified resource constraints for a target FPGA platform. The article

presents a comparison between these frameworks in terms of supported neural network models,

1http://caffe.berkeleyvision.org/.
2http://torch.ch/.
3http://deeplearning.net/software/theano/.
4https://caffe2.ai/.
5http://pytorch.org/.
6https://www.tensorflow.org/.
7https://mxnet.apache.org/.
8https://developer.apple.com/documentation/coreml.
9https://www.microsoft.com/en-us/cognitive-toolkit/.
10https://developer.nvidia.com/tensorrt.

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

http://caffe.berkeleyvision.org/
http://torch.ch/
http://deeplearning.net/software/theano/
https://caffe2.ai/
http://pytorch.org/
https://www.tensorflow.org/
https://mxnet.apache.org/
https://developer.apple.com/documentation/coreml
https://www.microsoft.com/en-us/cognitive-toolkit/
https://developer.nvidia.com/tensorrt

Toolflows for Mapping CNNs on FPGAs: A Survey and Future Directions 56:3

Table 1. CNN-to-FPGA Toolflows

Toolflow Name Interface Year

fpgaConvNet [85–88] Caffe & Torch May 2016

DeepBurning [90] Caffe June 2016

Angel-Eye [23, 24, 68] Caffe July 2016

ALAMO [55–59] Caffe August 2016

Haddoc2 [1, 2] Caffe September 2016

DnnWeaver [75, 76] Caffe October 2016

Caffeine [98] Caffe November 2016

AutoCodeGen [54] Proprietary Input Format December 2016

Finn [19, 84] Theano February 2017

FP-DNN [22] TensorFlow May 2017

Snowflake [10, 21] Torch May 2017

SysArrayAccel [91] C Program June 2017

FFTCodeGen [95–97, 100] Proprietary Input Format December 2017

interface, generated hardware architecture, methods used to explore the design space, supported

arithmetic precision, and performance. Moreover, major challenges introduced by the latest trends

in deep learning are identified and possible research directions for automated frameworks are pre-

sented. Finally, a benchmark suite together with a uniform evaluation methodology are proposed,

aiming at the thorough and in-depth evaluation of CNN-to-FPGA toolflows.

2 CNN-TO-FPGA TOOLFLOW CHARACTERISTICS

In this section, existing toolflows are analysed with respect to their applicability, design method-

ology, and performance. The applicability to an end user is investigated based on the supported

neural network models, the input interface, and the portability. The design methodology is exam-

ined based on the hardware architecture, the design space exploration approach, and the arith-

metic precision choices. Finally, the performance is analysed based on the reported results of each

toolflow.

2.1 Supported Neural Network Models

The application scope of a framework determines the range and type of applications it can target.

The majority of the existing toolflows limit their focus on the automated mapping of CNN infer-

ence, with Finn focusing on the more specific field of Binarized Neural Networks (BNNs) [37].

The most common types of layers in a CNN are the convolutional (CONV), nonlinear (NONLIN),

pooling (POOL), and fully connected (FC) layers [47]. All existing frameworks support these lay-

ers, with ALAMO, DeepBurning, DnnWeaver, and AutoCodeGen also supporting Local Response

Normalization (NORM) layers [46]. Moreover, fpgaConvNet, ALAMO, and Snowflake focus mostly

on the feature extractor part of CNNs, including CONV, NONLIN, and POOL layers, and offer un-

optimized support for FC layers by casting them as CONV layers with 1 × 1 kernels. With respect

to compound, irregular CNN building blocks, residual blocks [33] are supported by fpgaConvNet,

ALAMO, and Snowflake, Inception modules [82, 83] by fpgaConvNet and Snowflake, and dense

blocks [36] by fpgaConvNet. Haddoc2 requires all the weights to be stored on-chip, and therefore

the supported model size is constrained by the storage resources of the target device. Currently,

DeepBurning and FP-DNN demonstrate the widest range of supported applications by also sup-

porting Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks [34].

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

56:4 S. I. Venieris et al.

2.2 Interface

2.2.1 Input. The input interface of an FPGA framework plays a decisive role in its ease-of-

use and accessibility to CNN developers. Caffe constitutes the most widely supported front end

with support from seven of the FPGA frameworks, including fpgaConvNet, DeepBurning, Angel-

Eye, ALAMO, Haddoc2, DnnWeaver, and Caffeine, due to its structured, protobuf-based11 syn-

tax, the vast availability of pretrained models,12 and the large user community. fpgaConvNet and

Snowflake also provide back ends to Torch, and FP-DNN has selected TensorFlow as its front end.

With Theano being the first framework to support BNNs, Finn supports Theano-defined BNNs as

its input.

SysArrayAccel, AutoCodeGen, and FFTCodeGen have so far adopted custom front ends. SysAr-

rayAccel uses C programs with embedded pragma directives as its front end and exploits the open-

source ROSE13 compiler to capture them. Similarly, AutoCodeGen uses its own proprietary net-

work descriptor, resembling the Caffe syntax. FFTCodeGen employs a custom interface that is

based on the YAML14 serialization framework to specify the CNN model, packaged in a Python 3

wrapper. The design choice of using custom front ends makes it more difficult to integrate with the

existing deep-learning toolchains and requires additional infrastructure to make it easily accessible

to deep-learning practitioners.

2.2.2 Portability. A primary characteristic of a CNN-to-FPGA toolflow is the range of sup-

ported FPGAs. This feature entails the property of design portability. Portability is defined as the

degree to which a toolflow can target FPGA platforms with different specifications. A toolflow with

high portability would be able to target (1) devices by multiple vendors and families, (2) different

setups such as System-on-Chips (SoCs), host-FPGA servers, and standalone FPGA devices, as well

as (3) FPGAs of different sizes. Moreover, the choice of development tools and level of design, e.g.,

RTL, vendor-specific HLS, or open-source HLS, can affect a toolflow’s portability.

Currently, the highest degree of portability has been demonstrated by DnnWeaver.

DnnWeaver generates portable RTL in Verilog and has been reported to target both SoCs and

server-grade FPGAs from both Xilinx and Intel, including the Xilinx Zynq XC7Z020 SoC and the

larger Intel Stratix V GSD5 and Arria 10 GX115. In a similar manner, Haddoc2 generates RTL,

which targets both Intel and Xilinx devices, while AutoCodeGen restricts its scope to RTL target-

ing Xilinx devices. fpgaConvNet generates its accelerators in Vivado HLS by Xilinx, while Deep-

Burning and Angel-Eye use RTL-level design optimized for Xilinx devices. All three toolflows

currently support Xilinx SoCs with results reported on Zynq XC7Z020 and XC7Z045. In a simi-

lar manner, Snowflake targets Xilinx SoCs, such as Zynq XC7Z045. Caffeine is also developed in

Vivado HLS and supports server-grade FPGAs with reported results on Kintex UltraScale KU060

and projected results on the larger Virtex 7 VX690T. At the moment, Caffeine’s fully automated

components target Xilinx devices that support a runnable SDAccel15 environment and a PCIe in-

terface between the FPGA and a host. FFTCodeGen generates RTL designs in Verilog and targets

the Intel Heterogeneous Research Platform (HARP), consisting of tightly coupled CPU and FPGA

with shared memory between them. The target FPGA device is Stratix V GXA7, with a 10-core

Intel Xeon E5-2600 v2 CPU as a host.

FP-DNN employs both RTL-level design for its computation engine and Intel OpenCL for in-

terfacing and control logic. In the same direction as Caffeine, FP-DNN targets Intel server-grade

11https://developers.google.com/protocol-buffers/.
12http://caffe.berkeleyvision.org/model_zoo.html.
13http://rosecompiler.org/.
14http://yaml.org/.
15https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html.

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

https://developers.google.com/protocol-buffers/
http://caffe.berkeleyvision.org/model_zoo.html
http://rosecompiler.org/
http://yaml.org/
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html

Toolflows for Mapping CNNs on FPGAs: A Survey and Future Directions 56:5

FPGAs, with results reported on a Catapult system [9] hosting a Stratix V GSD5 FPGA. Similarly to

FP-DNN, SysArrayAccel’s hardware is developed in Intel OpenCL with results reported on Arria

10 GT115. Finn generates synthesizable Vivado HLS accelerators and has demonstrated support

for the Zynq XC7Z020 and XC7Z045 SoCs as well as the server-grade UltraScale KU115 device in a

host-FPGA server setup. Finally, ALAMO’s generated RTL designs have demonstrated support for

Intel standalone and SoC platforms by targeting the standalone, high-bandwidth Stratix V GXA7

and the Arria 10 GX115 SoC.

2.3 Hardware Architecture

The architectures generated by the tools can be taxonomized in two main categories:

Streaming architectures. A streaming architecture typically consists of one distinct hardware

block for each layer of the target CNN, where each block is optimized separately to exploit the

parallelism of its layer. All the heterogeneous blocks are chained to form a pipeline as depicted in

Figure 1. The data proceed through the different parts of the neural network as they are streamed

through the architecture. As a result, this design approach exploits the parallelism between layers

by means of pipelining and enables their concurrent execution. Nevertheless, the increased effi-

ciency comes with long compilation times, since a new bitstream has to be generated for each CNN.

1) fpgaConvNet. fpgaConvNet employs a streaming architecture that assigns one processing

stage per layer. Given a CNN, each layer is mapped to a series of building blocks that are chained

together as a coarse pipeline. fpgaConvNet’s building blocks include the most commonly utilized

components of CNNs, such as convolution and pooling units as well as sliding window structures

that provide line-buffering functionality. Moreover, fpgaConvNet employs specialized hardware

blocks to map networks with irregular dataflow [33, 36, 82, 83], including Inception, residual, and

dense hardware blocks. The performance-resource trade-off of each instantiated block is tuned

separately to meet the needs of each layer in the design space exploration phase. fpgaConvNet

supports multi-bitstream designs, where different hardware architectures are responsible for ex-

ecuting different parts of the CNN. Currently, this feature requires the full reconfiguration of the

FPGA when data have to enter a new architecture, with the potential for multi-FPGA mappings.

fpgaConvNet employs a set of strategies to tailor the generated design to the input CNN

while respecting the FPGA resources. For latency-sensitive applications, where the time cost of

bitstream-level reconfiguration is prohibitive and batch processing cannot be used to amortise it,

fpgaConvNet generates a flexible, latency-optimized architecture, which is time-shared to execute

different parts of the network by means of soft, run-time reconfiguration of its datapath. Although

this latency-driven design approaches the time-shared, single computation engine paradigm, the

hardware stages that comprise the architecture are derived and customized based on the structure

of the target network and still operate in a streaming manner. Internally, fpgaConvNet utilises a

Synchronous Dataflow (SDF) model [48] to represent architectures. With SDF, the processing rates

of all blocks in the system are known a priori and therefore a static schedule is generated to drive

the datapath.

2) DeepBurning. In a similar approach to fpgaConvNet, DeepBurning’s core consists of a library

of building blocks that follow the functionality of common neural network components. Currently,

the library combines conventional hardware elements, such as nonlinear and pooling operators,

with more exotic components, such as dropout units [80]. Given a network structure, the frame-

work’s hardware generator builds the neural network architecture by selecting and instantiating

blocks from the library, with the appropriate interconnections between them. To meet the target

FPGA resource constraints, each block is parameterized so that it can be time-shared both across

layers and across parts of a single layer.

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

56:6 S. I. Venieris et al.

Fig. 1. Example of a streaming accelerator architecture. Fig. 2. Example of a single computation

engine accelerator.

The architecture adopts a run-time, data-driven mechanism where each block executes when-

ever data are present at its inputs and largely depends on the time-sharing pattern of each block.

After the datapath structure and the memory transactions schedule have been determined, the

hardware generator creates a centralized control unit, which is responsible for the data move-

ment between the off- and the on-chip memory. Moreover, a dynamic, run-time control approach

is adopted by means of dedicated finite state machines that dynamically control the operation of

each time-shared block. DeepBurning’s dynamic dataflow approach differs from fpgaConvNet’s

synchronous dataflow scheme in that DeepBurning does not model the data rates of all blocks and

thus requires dynamic control logic, rather than generating a static schedule at compile time.

3) Haddoc2. Haddoc2 generates its architecture by modeling the target CNN as a dataflow

graph of actors and directly mapping each actor to a dedicated compute unit. This approach results

in the mapping of each layer to a hardware stage, similarly to fpgaConvNet and DeepBurning, with

layers executing in parallel in a pipelined manner. The hardware mapping of each layer exploits the

full unrolling of its input and output feature maps, and the dot products of convolutions. Unrolling

along the three aforementioned dimensions increases the required number of multipliers and on-

chip storage, rapidly making the available DSPs and memory of the target FPGA device the limiting

factors with respect to the size of CNN that can be mapped. To alleviate the excessive requirement

for DSPs, Haddoc2 implements all its multipliers solely with logic. Furthermore, since all trained

weights are required to be stored on-chip, with off-chip transactions being limited to only the

input and output of the network, the weights constitute constant operands for the multipliers. As

a result, during synthesis, multiplications with weight values of 0, 1, or powers of 2 are either

removed or mapped to direct connections or shift operators, respectively.

With respect to scheduling, Haddoc2’s architecture follows a data-driven approach with the

schedule generated statically at compile time. This scheduling method is similar to fpgaConvNet’s

approach and differs from the dynamic control mechanism of DeepBurning. Nevertheless, in con-

trast to fpgaConvNet and DeepBurning, which support the time-sharing of their resources by

means of folding, Haddoc2 does not support partial unrolling and, therefore, given a target device,

the maximum model size can be quickly bounded either by the available logic or on-chip storage.

4) AutoCodeGen. AutoCodeGen includes parameterized hardware blocks at the layer level,

supporting CONV, POOL, NORM, and FC layers. CONV blocks consist of convolvers that

perform dot-product operations in a fully unrolled manner. The instantiated convolvers are

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

Toolflows for Mapping CNNs on FPGAs: A Survey and Future Directions 56:7

further organized in a tunable number of groups, with input feature maps being shared across

all groups. Each convolver group processes the input feature maps with a different set of weights

to compute independent output feature maps. Within a group, the inputs are parallelized across

the convolvers, followed by an adder tree for the reduction of the partial results. FC layers are

mapped to compute units, named FCcores, that tunably exploit the input neurons parallelism and

can be time-multiplexed. Similarly, POOL blocks exploit the parallelism of output feature maps to

a tunable degree. NORM layers are mapped to a fixed hardware block, which employs a piecewise

linear approximation scheme for exponential operations and single-precision floating-point

arithmetic to minimise precision loss. In contrast to the data-driven control mechanisms of

the rest of the toolflows that generate streaming architectures, AutoCodeGen performs the

scheduling and control of each hardware block in a distributed manner, with dedicated, local

FSMs coordinating the operation of each block.

5) Finn. Finn adopts the data-driven paradigm and generates a custom streaming architecture

based on a BNN’s structure. Given a target BNN, each layer is mapped to a dedicated computation

engine and all engines are connected in a pipelined manner. With this design, each computation

engine can be configured to meet the requirements of the associated layer and match the process-

ing rate of neighbouring engines. In this manner, the overall architecture is tailored to the partic-

ular network. With emphasis placed on BNNs, the computation engines differ from conventional

CNN hardware designs and are optimized for the efficient mapping of binarized layers, including

dedicated hardware for binarized convolutions, max pooling, and batch normalization [40]. Finn

expresses binarized convolutions as matrix-vector operations followed by thresholding. To this

end, the integral block of the architecture is the Matrix-Vector-Threshold Unit (MVTU), which is

optimized to perform the majority of the core binarized operations. In terms of scheduling, Finn’s

approach lies closer to fpgaConvNet’s synchronous dataflow scheme and farther from DeepBurn-

ing’s dynamic dataflow, with static schedules generated at compile time. Finally, in contrast to

fpgaConvNet and DeepBurning and similarly to Haddoc2, all the binarized weights are required

to be stored on-chip, with the external memory transfers focusing only on the input and output

of the network, imposing a hard limit to the size of networks that can be addressed.

Single computation engines. This design approach favors flexibility over customization. Such an

architecture comprises a single computation engine, typically in the form of a systolic array of

processing elements or a matrix multiplication unit, that executes the CNN layers sequentially.

The control of the hardware and the scheduling of operations is performed by software (Figure 2).

This design paradigm consists of a fixed architectural template that can be scaled based on the

input CNN and the available FPGA resources. With this scheme, each CNN corresponds to a dif-

ferent sequence of microinstructions that are executable by the hardware. By taking this approach

to the extreme, the architecture can be configured and scaled based only on the resources of the

target FPGA without targeting a specific CNN and, as a result, after a single compilation, the

same bitstream can target many CNNs without the overhead of bitstream-level reconfiguration.

Despite the flexibility gains, inefficiencies are introduced due to control mechanisms that resemble

those of a processor [27]. Moreover, the one-size-fits-all approach can lead to high variability in

the achieved performance across CNNs with different workload characteristics.

1) Angel-Eye. The design principle behind the Angel-Eye framework is based on having a single

flexible computation engine that can be programmed and controlled by software. The main com-

putational component is an array of Processing Elements (PEs) with each PE containing a bank of

convolvers, an adder tree and an optional pooling path. The input feature maps of a CONV layer

are shared across all PEs and each PE processes its inputs with a different set of kernels to produce

independent output feature maps. Within a PE, the inputs are parallelized across the convolvers,

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

56:8 S. I. Venieris et al.

followed by the adder tree that combines partial results to produce the output. Overall, the orga-

nization of Angel-Eye’s and AutoCodeGen’s hardware for CONV layers are following the same

strategy by organizing convolvers into groups and tunably unrolling with respect to input and

output feature maps.

The framework’s compiler translates the input CNN to a sequence of instructions from Angel-

Eye’s custom instruction set and the computation engine executes the instructions. This process

corresponds to the sequential execution of the layers in a time-sharing manner. With different

CNNs mapped to different instruction sequences, the architecture can be reused to execute vari-

ous models without recompilation or reconfiguration. In this respect, the hardware design is con-

figured and scaled based only on the available resources of the target device and hence is CNN-

independent.

2) ALAMO. In contrast to Angel-Eye, ALAMO customises the generated computation engine to

the input CNN. The architecture comprises hardware blocks for POOL, ReLU, and NORM layers,

together with a 2D array of compute units that is shared between CONV and FC layers. In CONV

layers, the array exploits the parallelism within one input feature map and across multiple output

feature maps. At each time instant, each row of the array is responsible for one output feature

map, with its columns processing different windows of the same input feature map and combining

their partial results synergistically. FC layers are mapped on the same hardware block, by casting

them as 1 × 1 CONV layers. Moreover, ALAMO includes a batch normalization block and an ele-

mentwise adder. These components are employed as complementary to the main blocks, with the

elementwise adder used to implement models with irregular dataflow, including residual networks

[33].

Overall, ALAMO’s compiler considers the layers that are present in the target CNN and instan-

tiates only the necessary hardware blocks. After the architecture has been generated, the layers

are scheduled in a sequential manner. This approach alleviates the problem of allocating resources

among different layers of the same type and simplifies the design space to include only the scaling

of each hardware block and the scheduling of the layers. The control of the generated accelerator is

statically determined at compile time and is encoded as configurations that are loaded sequentially

on the accelerator as different parts of the network are executed.

3) DnnWeaver. DnnWeaver’s hardware is based on a parameterized architectural template.

The template comprises an array of coarse Processing Units (PUs). Each PU contains a datapath

that includes an array of Processing Elements (PEs) that execute CONV and FC layers, followed

by dedicated units for NORM, POOL, and NONLIN layers. Within a PU, the CONV and POOL

layers are pipelined and their execution is overlapped to exploit the parallelism across layers. The

computation of output feature maps for CONV and POOL layers and output neurons for FC layers

are scheduled across PUs, with PEs exploiting the parallelism between different elements of each

output feature map. Generating a specific instance of the template requires trading between the

number of PUs and PEs per PU, which resemble the tunable parameters of Angel-Eye’s and Au-

toCodeGen’s architectures. However, in contrast to Angel-Eye, which considers only the available

resources of the target device, in DnnWeaver this tuning is performed at the design space explo-

ration stage and is tailored to the input CNN and constrained by the resources of the target FPGA,

as in the case of ALAMO.

4) Caffeine. Caffeine’s hardware consists of a systolic array of PEs that perform multiplication

operations. The array offers scalability in implementing convolution operations by exploiting dif-

ferent levels of parallelism, with optional connections between the output of each PE and dedicated

blocks for ReLU and POOL layers. Moreover, support for FC layers is achieved by transforming

the matrix-vector multiplications of FC layers into batched convolutions and mapping them to the

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

Toolflows for Mapping CNNs on FPGAs: A Survey and Future Directions 56:9

existing convolution structure, which allows the reuse of the exact same hardware for both layers.

Given a CNN-FPGA pair, the number of parallel PEs is set after the design space exploration phase,

so that the hardware will be tailored to the target CNN.

5) FP-DNN. Drawing from the fact that CONV and FC layers as well as recurrent connections in

RNNs and the gate blocks in LSTMs can be converted to matrix multiplications, FP-DNN generates

an architecture with a single generic Matrix Multiplication (MM) engine as its core. To balance

the computational resources with the external memory bandwidth, tiling is applied on the input

matrices, with the tiles processed in a pipelined manner. The MM engine processes the tiles in a

vector by vector basis by means of a dot-product unit. The dot-product unit consists of an array

of multipliers, which fully unrolls all the multiplications of the dot product, followed by an adder

tree. To sustain a high utilization of the computational resources and hide the latency of the off-

chip memory, FP-DNN employs double buffering for the transfer of matrix tiles. The MM engine

is time-shared between layers, with nonlinearities and pooling operations applied by separate

hardware prior to writing back intermediate results to the off-chip memory. The on-chip memory

is organized as a pool of buffers that can be reused by different data at run time to sustain a

high utilization, with the allocation schedule for each buffer handled as part of the design space

exploration. Finally, the layer-specific control logic and the interface with the external memory

and the host CPU are implemented with OpenCL-based modules.

6) Snowflake. Snowflake’s hardware design employs a hierarchical structure that is designed to

be controlled by software. At the top level, the architecture comprises a number of hardware com-

pute clusters, organized as an array of tunable size. Each compute cluster contains four parallel

compute units (CUs) with a shared buffer for storing feature maps of the current layer and with

each CU consisting of four vector MACC (vMAC) units. Internally, each vMAC includes 16 MACC

operators, that process 16-bit operands, together with a private buffer for storing weights of the

current layer. In a vMAC, the MACC operators can be configured in two modes, based on the type

of parallelism to be exploited. The two modes include either assigning the computation of one

output feature map to each MACC operator, exploiting in this way the parallelism with respect to

the output feature maps, or assigning the computation of one input feature map to each MAC op-

erator, where the MACC operators collaborate to produce each output feature map by computing

partial results. Moreover, each CU also contains a vector max pooling operator (vMAX). Similarly

to FP-DNN, double buffering is employed to overlap computation and communication and hide

the latency of the external memory transfers.

From an operational perspective, Snowflake is similar to Angel-Eye’s programming flow. The

target CNN is translated by a custom compiler, named Snowball, into a series of instructions from

Snowflake’s instruction set and the generated architecture executes the instructions. This process

yields the execution of layers in a sequential manner. Moreover, instead of generating a different

hardware design for each target CNN, different models are mapped to their own stream of in-

structions and the architecture can be reused without bitstream-level reconfiguration. In a similar

manner to Angel-Eye, the generated hardware is CNN-independent and is scaled based only on

the available resources of the target device.

7) SysArrayAccel. SysArrayAccel follows Caffeine’s approach and adopts a 2D systolic array

of PEs to execute all the CONV layers of the target CNN. The main differentiating factor from

Caffeine’s hardware is that SysArrayAccel’s architecture has been designed so that each PE is

only connected locally to its neighbouring PEs. With this approach, SysArrayAccel avoids the

need for large multiplexers at the output of each PE, simplifying the routing and achieving high

clock frequencies. Each of the two dimensions of the array corresponds to one loop in the CONV

layer and each PE performs a configurable number of parallel MACC operations between inputs

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

56:10 S. I. Venieris et al.

and weights. The shape of the systolic array can be configured at compile time, so that different

degrees of parallelism can be exploited based on the workload characteristics of the target CNN and

the available FPGA resources. For the rest of the layers, dedicated hardware blocks are instantiated,

with FC layers mapped to a 1D array. Given a CNN-FPGA pair, the selection of loops to be mapped

on the systolic array and the shape of the array are selected in the design space exploration phase,

to optimize the structure of the systolic array for the target CNN.

8) FFTCodeGen. FFTCodeGen differentiates from the rest of the existing toolflows in two main

ways. First, FFTCodeGen is optimized to target the heterogeneous Intel HARP platform. In this

manner, the framework partitions the CNN workload between the CPU and the FPGA, so that

the CONV layers time-share the FPGA device and the rest of the layers are executed in software

by the CPU. Second, in contrast to the rest of the existing frameworks, FFTCodeGen performs

convolutions in the frequency domain by means of an FFT-based algorithm. With this approach,

the convolution operations in the space domain are mapped to Hadamard element-by-element

products in the frequency domain with decreased computational complexity.

The generated architecture consists of three main components. These comprise 2D FFT and In-

verse FFT (IFFT) blocks for transforming feature maps between the space and frequency domains,

and a Hadamard-Accumulation (HAC) unit. To perform FFT, FFTCodeGen organizes the input fea-

ture maps and the kernels as matrices. To support the flexible and tiled FFT-based processing of

CONV layers without the need for hardware reconfiguration, FFTCodeGen combines the conven-

tional Overlap-and-Add (OaD) method with the custom Concatenate-and-Pad (CaP) technique.

OaD enables the partitioning of the input matrices into tiles of tunable size. The CaP method adds

further flexibility by treating the batch size of the network as another dimension of the input fea-

ture maps matrix and introduces a tunable folding factor for the batch. The combination of OaD

and CaP enable the derivation of a fixed computation engine that can be time-shared among CONV

layers with different input feature map sizes, while sustaining high utilization. In this respect, all

tiles of a CONV layer are sequentially fed into the generated accelerator, with double buffering

used to hide memory latency, and their partial results are accumulated to produce the output fea-

ture maps matrix. Overall, FFTCodeGen uses batch processing to amortize the costs of FFT and

IFFT and to enable the CaP method to sustain a high utilization of the generated accelerator by

replacing ineffectual zero-padded operations with useful computations.

The 2D FFT and IFFT blocks perform N -point FFT and IFFT, respectively, by applying N -point

1D FFT on the rows of the input feature maps matrix, followed by an N -point 1D FFT on the

columns of the transpose of the resulted matrix. The two blocks contain N 1D pipelines each,

and share common, tunable folding factors for their rows and columns pipelines. The HAC unit

performs elementwise multiplication-accumulation and comprises an array of MACC operators,

which is parameterized with respect to its size. FFTCodeGen also comprises software modules for

the execution of NONLIN, POOL, and FC layers by the CPU. Overall, the processing of CONV

layers by the FPGA and the rest of the operations by the CPU are executed in a pipelined manner.

2.4 Design Space Exploration

Based on the parameterization and organization of its hardware, a toolflow defines a particular

architectural design space. Each design point in the design space can be characterized by its per-

formance, including latency and throughput, resource consumption and power efficiency. Typi-

cally, a framework would employ a mathematical model of the hardware with the aim to predict

how a particular design point performs and investigate how to influence its performance. Design

Space Exploration (DSE) refers to the task of traversing the design space and selecting one among

the alternative design points based on an application-specific objective. This enables a trade-off

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

Toolflows for Mapping CNNs on FPGAs: A Survey and Future Directions 56:11

between attainable performance and resource distribution and utilization across the multiple tun-

able parameters of the architecture, under the resource constraints of the target platform for any

given CNN model.

Parameter space. The proposed architecture of each framework provides different degrees of

freedom for customization, expressed in terms of a set of parameters. fpgaConvNet employs a

Synchronous Dataflow (SDF) model [48] to capture both the workload and the hardware mapping

of CNNs and express them as SDF graphs. Each layer of the input CNN is mapped to a series of

coarse hardware blocks, with each block represented as a node of the graph. The architectural

space is traversed by applying a set of transformations over the SDF graph representation of the

CNN hardware, such as (1) coarse-grained and (2) fine-grained folding of blocks, (3) graph parti-

tioning with full FPGA reconfiguration, and (4) weights reloading. The folding transformations are

used to control the degree of time-multiplexing of each block and influence its performance and

resource consumption. The FPGA reconfiguration is used to partition the CNN into several sub-

graphs and effectively change the hardware as the data flow through the CNN, with one optimized

hardware design (and bitstream) per subgraph. In this case, batch processing is used to amortize

the reconfiguration overhead, with (5) the batch size being a configurable parameter. The weights

reloading transformation includes the generation of a single flexible architecture that can be con-

figured at run time to execute different parts of the CNN, by loading different weights from the

memory and changing the datapath.

Similarly, Finn’s strategy to maximize performance entails the tailoring of each hardware block

along the generated streaming architecture to its layer’s workload. To achieve the required per-

formance, the processing rate between the blocks has to be balanced, since the slowest block de-

termines the overall throughput of the system. CONV and FC layers are converted to a matrix

multiplication between the trained weights and the layer’s inputs. With the MVTU being the core

computation engine for these operations (Section 2.3), Finn contains a mechanism to fold and

time-multiplex the MVTU. Each MVTU in the architecture is compile-time configurable with re-

spect to two parameters: (1) the number of PEs per MVTU and (2) the number of SIMD lanes per

PE, which correspond to the neuron and synapse folds, respectively, following Finn’s terminology.

DeepBurning’s accelerator generation is performed by a hardware generator and a compiler in

two steps. As a first step, the hardware generator processes the description of a neural network

and creates a baseline architecture. This is achieved by selecting appropriate blocks from Deep-

Burning’s library of neural network components and connecting them as necessary, to create a

streaming architecture, as happens in fpgaConvNet and Finn. In the second step, the compiler

tunes each block in the architecture so that the accelerator complies with the target FPGA re-

source constraints. Each block can be configured using (1) temporal folding, where several layers

share the same hardware block, and (2) spatial folding, where a single layer is partitioned and all

parts are processed by the hardware block in a time-multiplexed manner.

AutoCodeGen instantiates one hardware block per CNN layer. Similarly to Finn, the rate of

processing between blocks has to be balanced by tuning the parallelism degree of each hardware

block. Each CONV block is compile-time configurable with respect to (1) the number of convolver

groups and (2) the number of convolvers per group. Accordingly, each FCcore (Section 2.3) is

configurable, with respect to (3) the size of the multiplier array and the corresponding adder tree.

In DnnWeaver, the input CNN is mapped to a dataflow-based intermediate representation, sim-

ilar to fpgaConvNet. Each node represents an instruction from DnnWeaver’s custom instruction

set, with one instruction associated with each layer. The adopted dataflow representation differs

from fpgaConvNet’s SDF model in that it is utilized to obtain a high-level model of the CNN’s

workload while fpgaConvNet employs SDF to model both the CNN workload and its hardware

mapping. The architectural template is parameterized and tunable with respect to (1) the number

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

56:12 S. I. Venieris et al.

of PUs and (2) the number of PEs per PU as described in Section 2.3, as well as with respect to

(3) the scheduling of operations. The scheduling is controlled via the tiling factors for each layer’s

output feature maps, which is processed by each PU, and influences the amount of communication

with the off-chip memory.

Caffeine adopts a uniform representation for both the CONV and FC layers, which allows the

reuse of the same hardware for both layers, as happens in Finn. The design parameters to be

optimized include (1) the tiling factors along the three dimensions of the input and output feature

maps, (2) the tiling factors of the kernels in CONV layers, and (3) the batch size.

SysArrayAccel interprets CONV layers as nested loops. Analytical performance and resource

consumption models have been constructed for the systolic array hardware, which are parameter-

ized with respect to (1) the data reuse patterns of the nested loops and (2) the shape of the array.

Given a target CNN, different data reuse strategies yield different degrees of parallelism and cor-

respond to selecting two of the nested loops to be mapped on the two dimensions of the systolic

array and one loop on the parallel MACC resources of each PE. The shape of the array consists

of three parameters that determine the size of each of the two dimensions in the array and the

number of parallel MACC units in each PE. SysArrayAccel’s tunable parameters enable the explo-

ration along different data reuse strategies and the shaping of the computation engine with three

degrees of freedom, to traverse the throughput-resource cost space.

ALAMO generates an accelerator by integrating a set of parameterized modules. Depending on

the amount of resources of the target device and the distribution of computational workload in the

target CNN, different degrees of parallelism (1) within an input feature map and (2) across output

feature maps are exploited. FFTCodeGen instantiates N -point FFT and IFFT hardware blocks for

converting feature maps between the space and frequency domains (1) with N being a design

parameter. The two blocks are individually parameterized with respect to (2) the folding factor of

each pipeline. The HAC unit (Section 2.3) is also parameterized with respect to (3) the number of

MACC operators. Finally, (4) the buffer sizes for feature maps and weights are also tunable.

In contrast to the previously described approaches, Angel-Eye’s, FP-DNN’s, and Snowflake’s de-

sign principle dictates that the hardware architecture should be independent of the CNN workload.

In accordance to this approach, Angel-Eye’s generated architecture is parameterized with respect

to (1) the number of PEs and (2) the number of convolvers per PE as described in Section 2.3 and

their values are selected so that the resource utilization of the target platform is maximized. Simi-

larly, FP-DNN configures its main computation block based only on the available resources of the

target platform. As a result, FP-DNN’s Matrix Multiplication (MM) engine is compile-time con-

figurable with respect to (1) tile size, which is set so that MM’s throughput matches the off-chip

memory bandwidth of the target platform. Moreover, FP-DNN adopts a resource-sharing strategy

for the available on-chip memory resources by organizing the on-chip memory as a pool of buffers,

with (2) the allocation schedule of each buffer left as a parameter for the DSE. Finally, Snowflake

can be scaled at compile time only with respect to (1) the number of compute clusters based on

the available resources of the target device, while the number of compute units (CUs) and MACC

operators per CU are fixed.

In a different approach to the rest of the toolflows, Haddoc2 captures the input CNN as a

dataflow graph of actors and maps each actor to a physical dedicated hardware block, via a pro-

cess named Direct Hardware Mapping (DHM). With this approach, the architecture is generated

deterministically following the exact topology of the network, without configurable parameters.

Design space formulation and search. The existing FPGA frameworks adopt different levels of

analysis for design space exploration, which leads to different DSE methods. fpgaConvNet and

DnnWeaver cast the DSE as a formal constrained optimization problem subject to the resource

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

Toolflows for Mapping CNNs on FPGAs: A Survey and Future Directions 56:13

budget of the target FPGA. In each case, the objective function is a mathematical performance

model of the hardware, with fpgaConvNet offering either throughput maximization [86], latency

minimization [88] or multiobjective criteria [85] (such as latency-constrained throughput maxi-

mization) based on the user’s needs, while DnnWeaver focuses on throughput maximization and

employs batch processing. Due to the large parameter space that would make a brute-force enu-

meration intractable, both frameworks employ heuristic search methods to obtain a solution to the

optimization problem. DnnWeaver employs a proprietary search algorithm while fpgaConvNet

utilizes a custom global optimizer based on the Simulated Annealing algorithm [71].

Following a different approach, Caffeine bases its DSE on an enhanced version of the roofline

model [93, 99]. The refined roofline model yields a better estimate of the effective off-chip memory

bandwidth by making it dependent on the burst length of each transfer. In contrast to DnnWeaver

and fpgaConvNet, Caffeine’s adoption of the higher-level roofline-based modeling leads to a rel-

atively small design space, which enables exhaustive enumeration, with the roofline model used

to select the design point with the highest throughput subject to the target platform’s memory

bandwidth and FPGA resources. To limit the latency overhead caused by batch processing, Caf-

feine converts FC layers to CONV with a method that allows even small batches to reach high

throughput.

SysArrayAccel’s DSE formulation lies closer to fpgaConvNet’s analytical high-level modeling.

Emphasis is placed on constructing accurate performance and resource models of the hardware

given the selected data reuse patterns and the shape of the systolic array, and casting the DSE as an

optimization problem that aims to maximize throughput. The analytical approach of SysArrayAc-

cel leads to a high-dimensional design space, which makes DSE a difficult task. While fpgaConvNet

and DnnWeaver employed a global optimizer and a heuristic search algorithm, respectively, to

address this issue, SysArrayAccel applies a number of pruning strategies, including only the con-

sideration of design points that demonstrate high consumption of the FPGA resources, to reduce

the design space and make an exhaustive enumerative search feasible. As a result, although SysAr-

rayAccel substitutes Caffeine’s roofline-based modeling with analytical models, both frameworks

employ exhaustive enumeration for the selection of the highest-throughput design point subject

to the target off-chip memory bandwidth and FPGA resource constraints.

FFTCodeGen formulates DSE in a manner that combines the analytical approaches of fpgaCon-

vNet, DnnWeaver and SysArrayAccel, with the roofline model of Caffeine. A roofline model is

developed as a function of the number of points (N) of the FFT, to obtain the value of N that

balances the computation-to-communication ratio for the input CNN on the target platform. FFT-

CodeGen’s DSE expresses the computational roof as a function ofN and captures the computation-

to-communication bound of the target device by means of a single custom metric, named device

coefficient. This formulation enables the efficient traversal of the high-dimensional design space

and differs to the strategies of fpgaConvNet, DnnWeaver and SysArrayAccel to handle large de-

sign spaces. After the highest performing N for the target CNN-FPGA pair has been determined,

the analytical models are used to obtain the rest of the tunable parameters in a closed form. FFT-

CodeGen optimizes for high throughput, with customisable constraints on the number of points

of the FFT and the batch size to also support latency-driven applications.

Finn’s objective is to reach a user-defined throughput. The framework’s synthesizer module is

responsible for determining the values for the folding parameters, using the balancing of the pro-

cessing rates of all Matrix-Vector-Threshold Units as a heuristic. Besides throughput maximization,

Finn’s generated hardware design is also optimized with respect to latency, since no batching of

inputs is required. With an approach close to Finn’s, DeepBurning’s compiler performs a heuris-

tic search to set the folding parameters of the generated hardware to comply with the resource

constraints. Similarly to Finn, the generated design runs with a batch size of 1 and hence both

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

56:14 S. I. Venieris et al.

throughput and latency are optimized simultaneously. In resemblance to SysArrayAccel and fp-

gaConvNet, AutoCodeGen employs high-level analytical performance and resource models to set

the tunable parameters of each instantiated hardware block, with balancing the processing rates

of all hardware blocks as a heuristic, in a similar approach to Finn.

FP-DNN’s mapping strategy focuses on reusing the FPGA resources across layers. With respect

to computational resources, the tile size of the single Matrix Multiplication engine is heuristically

selected to match the off-chip memory bandwidth of the target platform. With respect to memory

resources, the allocation schedule of the pool of on-chip buffers is cast as a graph coloring problem

that is solved algorithmically, by taking into account the time slots during which the data of each

buffer have to remain intact and aiming to find a feasible reuse schedule that maximizes buffer

utilization.

ALAMO’s DSE focuses on the instantiation of the appropriate hardware blocks, the scaling of

each block and the scheduling of layers. The structure of the compute engine is derived based

on the topology and layers of the input CNN. After the necessary modules have been instantiated,

the compiler’s heuristic considers the resource budget of the target FPGA device and determines

the unroll factors within an input feature map and across the output feature maps of each layer,

to scale the 2D array of MACC operators and the POOL block (Section 2.3). ALAMO is designed

to operate with a batch size of 1 and therefore throughput and latency are co-optimized.

In contrast to the rest of the toolflows, Angel-Eye’s and Snowflake’s hardware generation are

CNN-independent and rely only on the available resources. Each of the two frameworks has a com-

piler that translates the input CNN to a series of instructions for the accelerator in a heuristic man-

ner. The DSE process includes the CNN-to-instructions mapping, with throughput maximization

as an objective. When several mappings with equal performance are possible, Angel-Eye’s com-

piler prioritizes mappings that minimize the off-chip memory accesses to reduce the bandwidth

requirements and power consumption. Moreover, Snowflake’s compiler performs optimizations

based on the structure of the target CNN, including loop removal, unrolling and rearrangement,

and includes a communication load balancing technique to sustain a high utilization of the com-

pute resources. Similarly to Finn and DeepBurning, Angel-Eye and Snowflake are designed to

operate with batch size of 1 and hence throughput and latency are co-optimized.

Haddoc2’s DHM approach performs a one-to-one mapping between the target network and the

generated hardware, without considering the specifications of the target platform. As a result,

given an input CNN, the toolflow deterministically generates a hardware design independently of

the available resources, and the resulting design is feasible only if it fits within the resource budget

of the target device. Moreover, the generated architecture operates with a batch size of 1 and hence

is optimized for both throughput and latency.

2.5 Arithmetic Precision

In FPGA-based CNN implementations, data quantization with few bits has been widely employed.

Low-precision fixed-point data representation has been studied to achieve comparable accuracy

with high-precision floating-point due to the significant redundancy of the models, while demon-

strating a drastic increase in performance [81]. The benefits of employing custom-precision arith-

metic are manifold, including reducing the external memory bandwidth requirements (and thus

decreasing power consumption due to off-chip memory data transfers), minimizing the on-chip

memory footprint, reducing the resource utilization by implementing fixed-point arithmetic units,

and thus leading to better hardware efficiency.

Based on the observation that significant variation is demonstrated between the dynamic range

of data in different layers of the same network, Angel-Eye employs an automated quantization

method to perform dynamic quantization across layers. Given a predefined wordlength for the

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

Toolflows for Mapping CNNs on FPGAs: A Survey and Future Directions 56:15

whole network, different scaling, which determines the radix point position, is selected for each

layer. Determining the scaling for each layer is formulated as an optimization problem, solved by a

greedy method that minimizes the residual error between the network’s outputs when fixed-point

and floating-point representations are used. After the scaling of each layer has been selected, the

quantized, fixed-point weights are fine-tuned by means of a retraining step, to compensate for the

accuracy loss due to quantization.

ALAMO and AutoCodeGen allow the wordlength and scaling of each unit to be adjusted at

compile time, so that in layers with narrow dynamic range a longer fractional part will be allocated

and vice versa. Similarly, DnnWeaver features dedicated bits within each instruction (generated

by the toolflow’s translator module) that dictate whether floating- or fixed-point results should be

generated, together with the number of fractional bits and the total bitwidth. Also, in DeepBurning,

all components in the hardware library support parameterizable input bitwidth, the value of which

is determined by the hardware generator of the toolflow based on the resource constraints.

Caffeine, fpgaConvNet, FP-DNN, SysArrayAccel, and FFTCodeGen provide support for both

floating- and fixed-point representations of feature maps and weights. However, a uniform quan-

tization is applied to all layers in all cases, with fixed wordlength and scaling across them. The

same approach is followed by Haddoc2, except that only fixed-point representation is supported.

Snowflake also employs uniform quantization across all layers but with a fixed bitwidth of 16 bits.

Finally, Finn consists almost entirely of binary operations as it focuses on BNNs.

2.6 Performance

The most critical characteristic of a CNN-to-FPGA toolflow is the achieved performance of the

generated system given a CNN-FPGA pair. An accelerator’s primary performance metrics of in-

terest are throughput and latency. A tool’s Quality of Results (QoRs) can be evaluated with respect

to two factors: (1) comparison with other toolflows for the same CNN-FPGA pair and (2) compari-

son with hand-tuned accelerators for the same CNN-FPGA pair. Meaningful and fair comparisons

across all toolflows would require each toolflow to generate an accelerator for the same CNN tar-

geting the same FPGA device. Nevertheless, the majority of the existing toolflows have not yet

been publicly released, which does not allow us to obtain results for the same CNN-FPGA bench-

marks. At the moment of writing, DnnWeaver has an open-source version16 that provides limited

support for the Zynq XC7Z020 platform, Haddoc2 has been open-sourced,17 Finn has been re-

leased in a lightweight version18 that targets Xilinx’s PYNQ-Z1 board and a set of specific BNNs,

fpgaConvNet has a dedicated webpage19 that presents up-to-date benchmarking results on several

networks, and Angel-Eye is internally used by DeePhi. Due to this fact, the sole feasible method

to evaluate each toolflow’s achieved performance is by referring to the reported results either in

the corresponding publications or by direct communication with the authors. In this study, we

combined both approaches to collect the presented results.

In this section, a performance comparison is presented with the aim to depict an as much as

possible well-rounded view of the strengths and weaknesses of each toolflow and draw conclusions

about the different mapping strategies. Our evaluation methodology consists of two components:

(1) to conduct a fair and meaningful evaluation, we perform direct comparisons only between tools

that have mapped the same CNN model on the same FPGA device, and (2) we assess the quality of

16http://act-lab.org/artifacts/dnnweaver/.
17https://github.com/KamelAbdelouahab/haddoc2.
18https://github.com/Xilinx/BNN-PYNQ.
19http://cas.ee.ic.ac.uk/people/sv1310/fpgaConvNet.html.

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

http://act-lab.org/artifacts/dnnweaver/
https://github.com/KamelAbdelouahab/haddoc2
https://github.com/Xilinx/BNN-PYNQ
http://cas.ee.ic.ac.uk/people/sv1310/fpgaConvNet.html

56:16 S. I. Venieris et al.

the automatically generated designs by comparing with the current state-of-the-art, hand-tuned

designs for the same CNN-FPGA pairs.

So far, results have been reported on a variety of CNN models, with different tools selecting dif-

ferent benchmarks and devices. Our evaluation is focused on the most commonly mapped AlexNet

and VGG16 networks, with a number of additional comparisons on LeNet-5, CIFAR-10, GoogLeNet,

and ResNet-152. Detailed results for both the feature extractors (CONV) and the feature extractors

followed by classifiers (OVRL)20 are listed in Tables 2 and 3 for AlexNet and VGG16, respectively,

on Zynq and UltraScale platforms and in Tables 4 and 5 for AlexNet and VGG16, respectively,

on Stratix V and Arria 10 platforms. Resource-normalizd metrics21 are also included, since, de-

spite their limitations, which are discussed in Section 3.1, they constitute the current literature

standard metric for CNN accelerator comparisons across different devices. For platforms from the

same FPGA family and vendor, normalization with respect to LUTs and ALMs can be used. For

heterogeneous platforms, normalization with DSPs is employed.

Comparison between toolflows. Figure 4(a) and 4(b) present comparisons of toolflows for the map-

ping of AlexNet and VGG16 on Zynq platforms. fpgaConvNet, DeepBurning, and DnnWeaver

mapped AlexNet on the resource-limited Zynq XC7Z020 platform (Figure 4(a)). With respect to the

feature extractor, fpgaConvNet achieves a throughput of 38.30GOp/s and outperforms DeepBurn-

ing and DnnWeaver by 2.06× and 1.9×, respectively, while for the whole AlexNet, DnnWeaver

reaches 1.34× higher throughput than DeepBurning. With respect to latency, fpgaConvNet’s

latency-driven methodology yields a 1.37× lower latency than DeepBurning for AlexNet’s fea-

ture extractor. DnnWeaver has been optimized for high-throughput applications and requires

batch processing to achieve high performance. Therefore, DnnWeaver’s latency has not been con-

sidered. When targeting the resource-richer Zynq XC7Z045, fpgaConvNet achieves 1.82× higher

throughput and 1.49× lower latency compared to DeepBurning, demonstrating a similar trend to

AlexNet on Zynq XC7Z020. Compared to Snowflake, fpgaConvNet reaches 1.64× higher through-

put and 1.21× lower latency, with Snowflake achieving 1.11× higher throughput than DeepBurn-

ing. With respect to mapping VGG16 on Zynq XC7Z020 (Figure 4(b)), fpgaConvNet achieves 1.22×
higher throughput than DnnWeaver. The gap between the two toolflows is small and possibly

due to the finer exploration method of fpgaConvNet.

Both fpgaConvNet and Angel-Eye have mapped VGG16 on Zynq XC7Z045 (Figure 4(b)). Angel-

Eye has achieved the current state-of-the-art performance of VGG16 on Zynq XC7Z045 with 1.20×
higher throughput than fpgaConvNet for the feature extractor and 136.97 GOp/s for the whole

network. Moreover, Angel-Eye achieves 1.52× lower latency than fpgaConvNet.

fpgaConvNet and Haddoc2 have both generated accelerators for the low-end LeNet-5 and

CIFAR-10 on Zynq XC7Z045 (Figure 3). In these two cases, Haddoc2 achieves 1.71× on LeNet-5

and 2.63× on CIFAR-10 higher throughput than fpgaConvNet, while using 3-bit and 6-bit bitwidth,

respectively, for the two networks compared to the 16-bit representation of fpgaConvNet.

DnnWeaver and FP-DNN mapped VGG16 and VGG19, respectively, on Stratix V GSD5 (Fig-

ure 5). VGG19 has a larger workload compared to VGG16 by having three additional CONV layers.

A larger number of CONV compared to FC layers can facilitate an accelerator’s performance, since

CONV layers are computation bounded. Noting this difference in the VGG19 and VGG16 work-

loads, we use FP-DNN’s performance on VGG19 as an indicator of its throughput on VGG16. In

this respect, FP-DNN achieves a throughput of 364.36 GOp/s and outperforms DnnWeaver by

2.31×.

20The complete performance results were obtained by contacting the authors.
21Results are normalized over the available resources of the target device.

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

Toolflows for Mapping CNNs on FPGAs: A Survey and Future Directions 56:17

T
a
b

le
2.

P
er

fo
rm

a
n

ce
C

o
m

p
a
ri

so
n

o
f

A
le

xN
et

o
n

Z
y

n
q

a
n

d
U

lt
ra

S
ca

le
P

la
tf

o
rm

s

fp
g
aC

o
n

v
N

et
D

ee
p

B
u

rn
in

g
D

n
n

W
e
a

v
e
r

S
n

o
w

fl
ak

e
C

aff
ei

n
e*

*

F
P

G
A

P
la

tf
o

rm
Z

y
n

q
X

C
7Z

02
0

Z
y

n
q

X
C

7Z
04

5
Z

y
n

q
X

C
7Z

02
0

Z
y

n
q

X
C

7Z
04

5
Z

y
n

q
X

C
7Z

02
0

Z
y

n
q

X
C

7Z
04

5
U

lt
ra

S
ca

le
K

U
06

0

F
re

q
u

en
cy

12
5

M
H

z
12

5
M

H
z

10
0

M
H

z
10

0
M

H
z

15
0

M
H

z
25

0
M

H
z

20
0

M
H

z

L
o

g
ic

C
ap

ac
it

y
53

.2
0

k
L

U
T

s
21

8.
60

k
L

U
T

s
53

.2
0

k
L

U
T

s
21

8.
60

k
L

U
T

s
53

.2
0

k
L

U
T

s
21

8.
60

k
L

U
T

s
33

1.
68

k
L

U
T

s

D
S
P

s*
22

0
90

0
22

0
90

0
22

0
90

0
27

60

O
n

-c
h

ip
M

em
o

ry
0.

6
M

B
2.

4
M

B
0.

6
M

B
2.

4
M

B
0.

6
M

B
2.

4
M

B
4.

7
M

B

A
ri

th
m

et
ic

P
re

ci
si

o
n

Q
8.

8
16

-b
it

fi
x
ed

-p
o

in
t

Q
8.

8
16

-b
it

fi
x
ed

-p
o

in
t

16
-b

it
fi

x
ed

-p
o

in
t

16
-b

it
fi

x
ed

-p
o

in
t

Q
3.

13
16

-b
it

fi
x
ed

-p
o

in
t

Q
8.

8
16

-b
it

fi
x
ed

-p
o

in
t

Q
8.

8
16

-b
it

fi
x
ed

-p
o

in
t

P
er

fo
rm

an
ce

(G
O

p
/s

)

38
.3

0
(C

O
N

V
)

-

19
7.

40
(C

O
N

V
)

-

18
.5

3
(C

O
N

V
)

15
.2

9
(O

V
R

L
)

10
8.

25
(C

O
N

V
)

57
.3

1
(O

V
R

L
)

20
.1

6
(C

O
N

V
)

20
.5

1
(O

V
R

L
)

12
0.

30
(C

O
N

V
)

-

16
3.

00
(C

O
N

V
)

16
5.

00
(O

V
R

L
)

P
er

fo
rm

an
ce

D
en

si
ty

(G
O

p
/s

/k
L

U
T

)

0
.7

2
(C

O
N

V
)

-

0
.9

0
(C

O
N

V
)

-

0
.3

5
(C

O
N

V
)

0
.2

9
(O

V
R

L
)

0
.4

9
(C

O
N

V
)

0
.2

6
(O

V
R

L
)

0
.3

8
(C

O
N

V
)

0
.3

8
(O

V
R

L
)

0
.5

5
(C

O
N

V
)

-

0
.8

1
(C

O
N

V
)

0
.8

3
(O

V
R

L
)

P
er

fo
rm

an
ce

D
en

si
ty

(G
O

p
/s

/D
S
P

)

0.
17

09
(C

O
N

V
)

-

0.
21

93
(C

O
N

V
)

-

0.
08

42
(C

O
N

V
)

0.
06

95
(O

V
R

L
)

0.
12

03
(C

O
N

V
)

0.
06

37
(O

V
R

L
)

0.
09

16
(C

O
N

V
)

0.
09

32
(O

V
R

L
)

0.
13

36
(C

O
N

V
)

-

0.
09

83
(C

O
N

V
)

0.
09

96
(O

V
R

L
)

L
at

en
cy

(b
at

ch
si

ze
=

1)
12

.7
0

m
s

(C
O

N
V

)

-

8.
22

m
s

(C
O

N
V

)

-

71
.7

5
m

s
(C

O
N

V
)

95
.4

8
m

s
(O

V
R

L
)

12
.3

0
m

s
(C

O
N

V
)

25
.4

7
m

s
(O

V
R

L
)

- -

9.
95

m
s

(C
O

N
V

)

-

- -

*
25
×1

8
D

S
P

co
n

fi
g
u

ra
ti

o
n

s.

**
C

aff
ei

n
e’

s
u

se
o

f
S
D

A
cc

el
is

re
p

o
rt

ed
to

h
av

e
an

u
p

-l
im

it
o

f
60

%
o

f
th

e
av

ai
la

b
le

re
so

u
rc

es
.T

h
er

ef
o

re
,t

h
e

60
%

is
u

se
d

fo
r

th
e

re
so

u
rc

e-
n

o
rm

al
iz

ed
m

et
ri

cs
.

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

56:18 S. I. Venieris et al.

T
a
b

le
3.

P
er

fo
rm

a
n

ce
C

o
m

p
a
ri

so
n

o
f

V
G

G
16

o
n

Z
y

n
q

a
n

d
U

lt
ra

S
ca

le
P

la
tf

o
rm

s

fp
g
aC

o
n

v
N

et
D

n
n

W
e
a

v
e
r

A
n

g
el

-E
y

e
C

aff
ei

n
e*

*

F
P

G
A

P
la

tf
o

rm
Z

y
n

q
X

C
7Z

02
0

Z
y

n
q

X
C

7Z
04

5
Z

y
n

q
X

C
7Z

02
0

Z
y

n
q

X
C

7Z
04

5
U

lt
ra

S
ca

le
K

U
06

0

F
re

q
u

en
cy

12
5

M
H

z
12

5
M

H
z

15
0

M
H

z
15

0
M

H
z

20
0

M
H

z

L
o

g
ic

C
ap

ac
it

y
53

.2
0

k
L

U
T

s
21

8.
60

k
L

U
T

s
53

.2
0

k
L

U
T

s
21

8.
60

k
L

U
T

s
33

1.
68

k
L

U
T

s

D
S
P

s*
22

0
90

0
22

0
90

0
27

60

O
n

-c
h

ip
M

em
o

ry
0.

6
M

B
2.

4
M

B
0.

6
M

B
2.

4
M

B
4.

7
M

B

A
ri

th
m

et
ic

P
re

ci
si

o
n

Q
8.

8
16

-b
it

fi
x
ed

-p
o

in
t

Q
8.

8
16

-b
it

fi
x
ed

-p
o

in
t

Q
3.

13
16

-b
it

fi
x
ed

-p
o

in
t

Q
8.

8
16

-b
it

fi
x
ed

-p
o

in
t

Q
8.

8
16

-b
it

fi
x
ed

-p
o

in
t

P
er

fo
rm

an
ce

(G
O

p
/s

)

48
.5

3
(C

O
N

V
)

-

15
5.

81
(C

O
N

V
)

-

31
.3

5
(C

O
N

V
)

31
.3

8
(O

V
R

L
)

18
7.

80
(C

O
N

V
)

13
6.

97
(O

V
R

L
)

31
0.

00
(C

O
N

V
)

26
6.

00
(O

V
R

L
)

P
er

fo
rm

an
ce

D
en

si
ty

(G
O

p
/s

/k
L

U
T

)

0
.9

1
(C

O
N

V
)

-

0
.7

1
(C

O
N

V
)

-

0
.5

9
(C

O
N

V
)

0
.5

9
(O

V
R

L
)

0
.8

6
(C

O
N

V
)

0
.6

2
(O

V
R

L
)

1
.5

5
(C

O
N

V
)

1
.3

3
(O

V
R

L
)

P
er

fo
rm

an
ce

D
en

si
ty

(G
O

p
/s

/D
S
P

)

0.
22

06
(C

O
N

V
)

-

0.
17

31
(C

O
N

V
)

-

0.
14

25
(C

O
N

V
)

0.
14

26
(O

V
R

L
)

0.
20

86
(C

O
N

V
)

0.
15

22
(O

V
R

L
)

0.
18

71
(C

O
N

V
)

0.
16

06
(O

V
R

L
)

L
at

en
cy

(b
at

ch
si

ze
=

1)
63

3.
01

m
s

(C
O

N
V

)

-

24
9.

50
m

s
(C

O
N

V
)

-

- -

16
3.

42
m

s
(C

O
N

V
)

22
4.

60
m

s
(O

V
R

L
)

- -

*
25
×1

8
D

S
P

co
n

fi
g
u

ra
ti

o
n

s.

**
C

aff
ei

n
e’

s
u

se
o

f
S
D

A
cc

el
is

re
p

o
rt

ed
to

h
av

e
an

u
p

-l
im

it
o

f
60

%
o

f
th

e
av

ai
la

b
le

re
so

u
rc

es
.T

h
er

ef
o

re
,t

h
e

60
%

is
u

se
d

fo
r

th
e

re
so

u
rc

e-
n

o
rm

al
iz

ed
m

et
ri

cs
.

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

Toolflows for Mapping CNNs on FPGAs: A Survey and Future Directions 56:19

Table 4. Performance Comparison of AlexNet on Stratix V and Arria 10

DnnWeaver ALAMO SysArrayAccel FFTCodeGen

FPGA Platform Stratix V SGSD5 Arria 10 GX115 Stratix V GXA7 Arria 10 GT115 Stratix V GXA7

Frequency 200MHz 200MHz 100MHz 239.62MHz 200MHz

Logic Capacity 172.60 kALMs 427.20 kALMs 234.72 kALMs 427.20 kALMs 234.72 kALMs

DSPs* 3180 3036 512 3036 512

On-chip Memory 4.9MB 6.6MB 6.25MB 6.6MB 6.25MB

Arithmetic Precision Q3.13 16-bit fixed-point Q3.13 16-bit fixed-point Q8.8 16-bit fixed-point 32-bit floating-point 16-bit fixed-point

Performance

(GOp/s)

97.10 (CONV)

97.56 (OVRL)

265.36 (CONV)

184.33 (OVRL)

134.10 (CONV)

114.50 (OVRL)

406.1 (CONV)

360.4 (OVRL)

-

780.60 (OVRL)

Performance Density

(GOp/s/kALM)

0.56 (CONV)

0.56 (OVRL)

0.62 (CONV)

0.43 (OVRL)

0.57 (CONV)

0.49 (OVRL)

0.95 (CONV)

0.84 (OVRL)

-

3.32 (OVRL)

Performance Density

(GOp/s/DSP)

0.0305 (CONV)

0.0307 (OVRL)

0.0874 (CONV)

0.0607 (OVRL)

0.2619 (CONV)

0.2236 (OVRL)

0.1337 (CONV)

0.1187 (OVRL)

-

1.5246 (OVRL)

Latency (batch size = 1) -

-

-

-

9.92 ms (CONV)

12.75 ms (OVRL)

-

4.05 ms (OVRL)

-

-

* 18×18 DSP configurations.

ALAMO maps AlexNet, VGG16, and ResNet-152 on Stratix V GXA7, which differs from the

GSD5 device used by DnnWeaver and FP-DNN, with FFTCodeGen mapping AlexNet and VGG16

on the same device that is present on the Intel HARP platform. Despite belonging to the same

FPGA family, the two devices have been designed and optimized for applications with different

characteristics. Stratix V GSD5 has been designed for algorithms with a large number of multiply-

accumulate operations, while Stratix V GXA7 is optimized for high-bandwidth applications. In

this respect, FP-DNN, DnnWeaver, ALAMO, and FFTCodeGen are compared with respect to

DSP-normalized throughput (Figure 5). ALAMO demonstrates 6× and 13.89× higher normalized

throughput than FP-DNN and DnnWeaver on VGG16. Furthermore, ALAMO achieves 7.28×
higher normalized throughput than DnnWeaver for the mapping of AlexNet on Stratix V and

7.64× higher normalized throughput than FP-DNN on ResNet-152 on Stratix V. Similarly, FFT-

CodeGen’s VGG16 accelerator achieves 11.41×, 26.4×, and 1.9× higher GOp/s/DSP than FP-DNN,

DnnWeaver and ALAMO, with FFTCodeGen’s AlexNet design demonstrating 49.66× and 5.82×
higher GOp/s/DSP over DnnWeaver and ALAMO. However, this metric does not capture the

bandwidth difference of the two devices. Despite having fewer DSP blocks, the high bandwidth

of Stratix V GXA7 enables ALAMO and FFTCodeGen to sustain a higher utilization of their DSP

resources. As a result, DSP-normalized throughput does not reflect the intrinsic strengths and

weaknesses of the four designs, since it does not take into account essential device-specific char-

acteristics. Moreover, ALAMO is employing both DSPs and ALMs to implement its compute units,

which enables the toolflow to reach higher performance than the majority of its DSP-based coun-

terparts, while FFTCodeGen performs convolutions in the frequency domain with lower compu-

tational complexity and outperforms the competing toolflows.

DnnWeaver and SysArrayAccel mapped AlexNet on Arria 10 GX115 and GT115 (Figure 6). On

AlexNet, SysArrayAccel achieves a throughput of 360.4 GOp/s and outperforms DnnWeaver by

1.95×. By targeting VGG16 on the same device, SysArrayAccel reaches 1.27× (with FP precision)

and 3.24× (with 16-bit FXP precision) higher throughput than DnnWeaver, while outperforming

ALAMO by 1.62× (with 16-bit FXP precision) and with ALAMO overpassing by 1.56× (with FP

precision). AutoCodeGen and Caffeine are the only toolflows to target Virtex 7 VX690T and Ul-

traScale KU060, respectively, and therefore no meaningful comparison can be conducted with the

rest of the toolflows.

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

56:20 S. I. Venieris et al.

T
a
b

le
5.

P
er

fo
rm

a
n

ce
C

o
m

p
a
ri

so
n

o
f

V
G

G
16

o
n

S
tr

a
ti

x
V

a
n

d
A

rr
ia

10

D
n

n
W

e
a

v
e
r

A
L

A
M

O
F
P

-D
N

N
**

S
y

sA
rr

ay
A

cc
el

F
F
T

C
o

d
eG

en

F
P

G
A

P
la

tf
o

rm
S
tr

at
ix

V
S
G

S
D

5
A

rr
ia

10
G

X
11

5
S
tr

at
ix

V
G

X
A

7
A

rr
ia

10
G

X
11

5
S
tr

at
ix

V
S
G

S
M

D
5

A
rr

ia
10

G
T

11
5

S
tr

at
ix

V
G

X
A

7

F
re

q
u

en
cy

20
0M

H
z

20
0M

H
z

15
0M

H
z

20
0M

H
z

15
0M

H
z

23
1.

85
M

H
z

20
0M

H
z

L
o

g
ic

C
ap

ac
it

y
17

2.
60

k
A

L
M

s
42

7.
20

k
A

L
M

s
23

4.
72

k
A

L
M

s
42

7.
20

k
A

L
M

s
17

2.
60

k
A

L
M

s
42

7.
20

k
A

L
M

s
23

4.
72

k
A

L
M

s

D
S
P

s*
31

80
30

36
51

2
30

36
31

80
30

36
51

2

O
n

-c
h

ip
M

em
o

ry
4.

9M
B

6.
6M

B
6.

25
M

B
6.

6M
B

4.
9M

B
6.

6M
B

6.
25

M
B

A
ri

th
m

et
ic

P
re

ci
si

o
n

Q
3.

13
16

-b
it

fi
x
ed

-p
o

in
t

Q
3.

13
16

-b
it

fi
x
ed

-p
o

in
t

Q
8.

8
16

-b
it

fi
x
ed

-p
o

in
t

Q
8.

8
16

-b
it

fi
x
ed

-p
o

in
t

16
-b

it
fi

x
ed

-p
o

in
t

16
-b

it
fi

x
ed

-p
o

in
t

16
-b

it
fi

x
ed

-p
o

in
t

P
er

fo
rm

an
ce

(G
O

p
/s

)

15
7.

39
(C

O
N

V
)

15
7.

51
(O

V
R

L
)

39
0.

02
(C

O
N

V
)

36
1.

55
(O

V
R

L
)

- 35
2.

24
(O

V
R

L
)

- 72
0.

15
(O

V
R

L
)

- 36
4.

36
(O

V
R

L
)

- 11
71

.3
0

(O
V

R
L

)

- 66
9.

10
(O

V
R

L
)

P
er

fo
rm

an
ce

D
en

si
ty

(G
O

p
/s

/k
A

L
M

)

0
.9

1
(C

O
N

V
)

0
.9

1
(O

V
R

L
)

0
.9

1
(C

O
N

V
)

0
.8

4
(O

V
R

L
)

- 1
.5

0
(O

V
R

L
)

- 2
.7

4
(O

V
R

L
)

- 2
.1

1
(O

V
R

L
)

- 2
.7

4
(O

V
R

L
)

- 2
.8

5
(O

V
R

L
)

P
er

fo
rm

an
ce

D
en

si
ty

(G
O

p
/s

/D
S
P

)

0.
04

95
(C

O
N

V
)

0.
04

95
(O

V
R

L
)

0.
12

84
(C

O
N

V
)

0.
11

91
(O

V
R

L
)

- 0.
68

79
(O

V
R

L
)

- 0.
23

72
(O

V
R

L
)

- 0.
11

45
(O

V
R

L
)

- 0.
38

58
(O

V
R

L
)

- 1.
30

68
(O

V
R

L
)

L
at

en
cy

(b
at

ch
si

ze
=

1)
- -

- -

- 87
.8

7
m

s

- 42
.9

8
m

s
(O

V
R

L
)

- -

- 26
.8

5
m

s
(O

V
R

L
)

- -

*
18
×1

8
D

S
P

co
n

fi
g
u

ra
ti

o
n

s.

**
F
P

-D
N

N
m

ap
s

V
G

G
19

o
n

S
tr

at
ix

V
.

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

Toolflows for Mapping CNNs on FPGAs: A Survey and Future Directions 56:21

Fig. 3. Comparison on mapping LeNet-5, CIFAR-10, and GoogLeNet on Zynq XC7Z045.

Fig. 4. Comparison targeting Zynq platforms.

Fig. 5. DSP-normalized comparison on mapping AlexNet, VGG16, and ResNet-152 on Stratix V.

Comparison between toolflows discussion. Among fpgaConvNet, DnnWeaver, DeepBurning, and

Snowflake, fpgaConvNet’s higher throughput comes potentially as a result of its SDF-based de-

sign methodology that allows for a finer exploration of the design space. However, DnnWeaver’s

heuristic mapping and scheduling algorithm aims to optimally configure the templates of its ac-

celerator, which leads to higher performance than DeepBurning, but still with less room for finer-

grained customization over a given CNN-FPGA pair than fpgaConvNet. With respect to latency,

although DeepBurning and Snowflake are designed to co-optimize latency and throughput by op-

erating with a batch size of 1, fpgaConvNet’s latency-driven methodology [88] is explicitly used

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

56:22 S. I. Venieris et al.

Fig. 6. Comparison on mapping AlexNet and VGG16 on Arria 10.

for the generation of latency-optimized accelerators leading to a lower latency for AlexNet’s fea-

ture extractor on both Zynq XC7Z020 and XC7Z045. Snowflake has been optimized from both an

architectural and a compiler level to sustain close to peak utilization of its compute resources and

operate at the high clock frequency of 250MHz. Despite utilizing 3.5× fewer DSPs than DeepBurn-

ing, Snowflake demonstrates a 11% higher throughput on AlexNet by reaching a computational

efficiency of 94%. Overall, the analytical design space exploration methods of fpgaConvNet and

DnnWeaver, which provide a finer optimization of the hardware, proved to give a slight advan-

tage over the brute-force mapping approach of DeepBurning.

By mapping VGG16 on Zynq XC7Z045, Angel-Eye outperforms the fpgaConvNet-generated

design. By taking into account the clock frequency difference between the two designs, the clock

frequency-normalized throughput ratio becomes 1×. Nevertheless, fpgaConvNet employs batch

processing to achieve high throughput while Angel-Eye has been designed to co-optimize through-

put and latency by operating with a batch size of 1. In this context, Angel-Eye achieves 1.52× lower

raw latency and 1.27× lower clock frequency-normalized latency. The latency gap between the

two frameworks comes potentially from the fact that Angel-Eye’s parameter space, as presented

in Section 2.4, enables the tool to exploit the parallelism across both the input and output feature

maps of each CONV layer, by partially unrolling both dimensions to minimize latency. However,

fpgaConvNet’s architecture tunably unrolls only the output feature maps and applies pipelining

to the input feature maps, which sets a higher bound on the latency.

For the mapping of LeNet-5 and CIFAR-10, Haddoc2 employs 3-bit and 6-bit representations

for both weights and feature maps. The toolflow implements all its compute units in logic instead

of DSPs, and hence such low-precision operands enable the instantiation of a large number of

units and the extraction of high throughput from the target device, without being limited by the

available number of DSPs. However, fpgaConvNet employs 16-bit representation and implements

its operators solely using DSPs. Consequently, Haddoc2 outperforms fpgaConvNet in the partic-

ular set of benchmarks. Nevertheless, the requirement of Haddoc2 for all weights to be stored

on-chip and the mapping of all CNN computations to dedicated units limits the maximum size of

CNNs that can be mapped to a particular device and, in this respect, Haddoc2 can mainly support

aggressively quantized networks.

FP-DNN has combined OpenCL-based control circuitry with a hand-crafted RTL computation

engine to overcome the limitations of OpenCL-generated compute units and exploit its advantages

in the handling of control and interfacing with the host and the external memory. FP-DNN’s scope

is limited to data-centre setups, which allows for server-specific assumptions and optimizations,

such as PCIe-based communication. FP-DNN’s highly optimized RTL Matrix Multiplication engine

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

Toolflows for Mapping CNNs on FPGAs: A Survey and Future Directions 56:23

together with the sophisticated on-chip buffer allocation scheduling method have demonstrated

the ability to target large-scale CNNs, such as VGG19 and ResNet-152 with a limitation on the

supported FPGA setup. However, DnnWeaver demonstrates a wider scope, including both em-

bedded and server-based FPGAs across different FPGA vendors and hence generality is a higher

priority. ALAMO maps its compute units to both DSPs and logic to extract higher throughput

from the target device and employs RTL-level design to perform low-level optimizations. These

properties have enabled ALAMO to outperform FP-DNN and DnnWeaver on the same CNN mod-

els. However, FFTCodeGen performs convolutions in the frequency domain and achieves higher

throughput than other toolflows on the same CNN-FPGA pairs by exploiting the lower compu-

tational complexity of this approach. Nevertheless, batch processing of the inputs is required by

FFTCodeGen to amortize the overhead of converting between the space and frequency domains,

which sets a limit to the lowest attainable latency of the framework. Finally, SysArrayAccel em-

ploys its analytical performance and resource models to efficiently traverse the design space of

systolic arrays and automatically configure tunable parameters at a finer grain than DnnWeaver.

This leads to SysArrayAccel’s higher performance on Arria 10.

Comparison with hand-tuned FPGA designs. ALAMO and FFTCodeGen map AlexNet and VGG16

on Stratix V GXA7. We compare it with the design by Suda et al. [81], which targets the same CNN-

FPGA pairs (Figure 5). The design in Reference [81] employs a formal optimization formulation

to configure an OpenCL-based accelerator that achieves 31.8GOp/s on AlexNet and 47.5GOp/s on

VGG16. Compared to these designs, ALAMO achieves a speed-up of 3.6× on AlexNet and 7.41×
on VGG16, with FFTCodeGen outperforming by 38.07× and 21.37×.

Despite the analytical design space exploration approach, Suda et al. use an off-the-shelf OpenCL

matrix multiplication kernel for the CONV layers. ALAMO’s RTL designs avoid the inefficiencies

introduced by OpenCL and leave space for hardware optimizations at a lower level by mapping

MACC units to both DSPs and logic. As a result, ALAMO trades off sophisticated design space

exploration for highly optimized, RTL-based compute units to reach high performance. From a

different perspective, the lower computational complexity of performing convolutions in the fre-

quency domain and the generation of a highly optimized computation engine enable FFTCodeGen

to outperform the OpenCL-based accelerator of Reference [81].

Figure 5 also presents a comparison between FP-DNN and DnnWeaver with the design of

Suda et al. on Stratix V GSD8. With the particular device belonging to the same class as Stratix V

GSD5, DSP-normalized metrics provide a meaningful comparison. Both FP-DNN and DnnWeaver

demonstrate higher performance than Suda et al. due to their highly optimized RTL designs.

Figure 6 presents a throughput comparison of the mapping of AlexNet and VGG16 on Arria

10 between toolflows and state-of-the-art, hand-crafted designs. For DnnWeaver’s and SysAr-

rayAccel’s AlexNet accelerators on Arria 10 GX115 and GT115, we compare with the state-of-

the-art Deep Learning Accelerator (DLA) by Intel [6]. DLA achieves 1.382TFLOp/s on AlexNet,

with DnnWeaver and SysArrayAccel reaching 13.26% and 26% of DLA’s performance. DLA em-

ploys a series of strategies to increase the DSP utilization of Arria 10. These include the use of

the Winograd transform to reduce the number of operations in convolutions and the design of a

high-throughput 1D systolic array that operates at the high frequency of 303MHz. Although DLA

outperforms both DnnWeaver and SysArrayAccel with respect to AlexNet’s mapping on Arria

10, it does not include an automated design flow and operates under the assumption that all in-

termediate feature maps can be cached on-chip. This is an assumption that is valid for networks

of comparable size to AlexNet, but it does not hold for larger-scale models, such as VGG16 and

ResNet-152.

For the VGG16 designs of DnnWeaver and SysArrayAccel on Arria 10, we compare with the ac-

celerators presented in References [56] and [101]. DnnWeaver achieves 56.03% and 20.20% of the

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

56:24 S. I. Venieris et al.

throughput of References [56] and [101], respectively. SysArrayAccel outperforms the throughput

of References [56] by 1.81×with a 1.78× improved latency and reaches 65.43% of the throughput of

Reference [101] with 1.56× degraded latency. The higher performance of Zhang et al. [101] comes

due to the fact that the authors embedded RTL in OpenCL kernels to introduce register-level op-

timizations for particular networks, which enabled them to reach the high frequency of 385MHz

and sustain high utilization of the FPGA’s on-chip RAM. Despite achieving higher performance,

such optimizations are hand-crafted and hence hard to exploit in other models in an automated

manner.

For the AlexNet design of AutoCodeGen on Virtex 7 VX690T, we compare with the 565.94GOp/s

accelerator presented in Reference [49]. AutoCodeGen achieves 222.1GOp/s and reaches 39% of

the throughput of the highly optimized accelerator. The design in Reference [49] has achieved

the current state-of-the-art performance of AlexNet on Virtex 7 VX690T, with manual optimiza-

tions for the particular CNN-FPGA pair. In this respect, despite achieving a lower raw throughput,

AutoCodeGen is able to target a wider range of networks than Reference [49] by means of its

automated flow.

At the time of writing, Angel-Eye’s mapping of VGG16 on Zynq XC7Z045 and fpgaConvNet’s

mappings of AlexNet on Zynq XC7Z020 and XC7Z045 and VGG16 on Zynq XC7020 are the state-

of-the-art designs for the particular CNN-FPGA pairs. Similarly, Caffeine is currently the highest

performing design to target Xilinx UltraScale KU060 and therefore no meaningful comparison can

be made with hand-tuned designs at the moment.

2.7 Discussion: Quality of Results

The limitations of the ad hoc benchmarking methodology of each toolflow do not allow us to

draw conclusive and meaningful results on the comparative QoR of the generated accelerators. A

uniform evaluation methodology that aims at surpassing the drawbacks of the current evaluation

procedures for CNN-to-FPGA toolflows is proposed in Section 3.1. For the toolflows that target

the same CNN-FPGA pairs, the following observations are made.

Toolflows that generate highly optimized RTL-based designs tend to outperform their HLS counter-

parts. This property can be observed in the comparison of ALAMO with the accelerator by Suda

et al. [81]. Although Suda et al. employed a more sophisticated DSE method, ALAMO trades off

a complex DSE to a detailed, RTL-level optimization of its hardware design and outperforms by

3.6×. A similar trend is observed between FP-DNN with DnnWeaver. Despite the fact that both

toolflows generate RTL designs, FP-DNN focuses more on the low-level RTL optimization of its

computation engine and manages to achieve higher throughput, despite not performing the ex-

tensive design space exploration of DnnWeaver. The highest performing VGG16 accelerator on

Arria 10 by Zhang et al. [101] provides additional evidence. The design in Reference [101] embeds

custom RTL-level optimizations in OpenCL kernels to boost the performance and avoid the current

limitations of the OpenCL programming model. In this way, Reference [101] achieves higher per-

formance than the CNN-to-FPGA toolflows. In spite of this advantage, the manual, hand-crafted

RTL design that is required to achieve this level of performance prohibits the automation that is

essential for a toolflow and therefore a trade-off between RTL performance and HLS productivity

is necessary.

Design space exploration methods that allow for finer customization tend to offer an advantage

in terms of QoRs. fpgaConvNet’s analytical methodology outperformed DnnWeaver’s slightly

more restricted design space, which in turn outperformed DeepBurning’s heuristic mapping.

Moreover, SysArrayAccel’s detailed design-space-exploration method enabled the traversal of a

larger design space than DnnWeaver, which led to higher performing designs. Similarly, the CaP

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

Toolflows for Mapping CNNs on FPGAs: A Survey and Future Directions 56:25

technique (Section 2.3) introduced by FFTCodeGen added another level of customization and en-

abled to full exploitation of the FFT-based convolution by sustaining a high utilization of the gen-

erated accelerator across CONV layers of different sizes.

Single computation engine architectures tend to reach high performance on CNNs with a uni-

form structure. This property can be observed in the case of the increase in the throughput of

DnnWeaver and SysArrayAccel when mapping VGG16 compared to AlexNet. The single com-

putation engine of both toolflows manages to sustain a very high utilization across the layers of

VGG16 due to the uniform kernel size of the CONV layers and the power of 2 number of input and

output feature maps after the first CONV layer. In contrast, the variable kernel sizes of AlexNet,

including 11 × 11, 5 × 5, and 3 × 3, lead to an underutilization of the shared computation engine.

Moreover, Angel-Eye’s mapping of VGG16 on Zynq XC7Z045 is also benefited by the uniformity

of VGG16 and reaches the highest reported raw performance for VGG16 on the particular device.

Nevertheless, FFTCodeGen is not affected by the irregularity in the kernel sizes of AlexNet due to

its tiled FFT-based algorithm and hence its throughput is not deteriorated.

2.8 Discussion: Suitability for Deep-Learning Application Challenges

CNNs have been successfully employed in a variety of problem domains, including video surveil-

lance [74], healthcare [17], and autonomous transportation [11]. Depending on the nature of the

domain, CNNs have to be deployed on processing platforms with different constraints and com-

pute capabilities, spanning from server-grade setups in a data centre [9] to low-power devices on

the edge [79]. Moreover, the variability of applications requires from the CNN implementations

to comply with diverse performance requirements, from the high-throughput needs of large-scale

cloud-based services to the critical low-latency requirements of autonomous drones and cars, with

low power consumption standing as a ubiquitous requirement. In this context, the different design

approaches of the existing CNN-to-FPGA toolflows determine their suitability to particular use

cases in the deep-learning application landscape.

Table 6 summarizes the features of each toolflow and the chart in Figure 7 depicts the effect

of each toolflow’s strategic design decisions on a number of aspects. Finn trades off very high

throughput and low latency by restricting its focus on the fine niche of binarized neural net-

works. The toolflow’s Vivado HLS-based accelerators can target only Xilinx devices, but with

enough infrastructure to target both embedded SoCs and standalone devices. These properties

make Finn-generated designs to be lightweight and applicable to both throughput-driven and

latency-sensitive applications, that also exhibit high error tolerance, due to the potential impact

of binarization on the accuracy.

DnnWeaver places FPGA compatibility and portability as a priority and bases its internal de-

sign on device-independent, RTL-based templates. The toolflow’s infrastructure and template-level

parameterization allow for variable precision along the CNN layers and has demonstrated the

widest support for SoCs, standalone, and server-grade FPGAs from different vendors. Its appli-

cation scope is restricted to high-throughput applications with large batch sizes, without special

consideration for low-latency requirements, which restricts the toolflow’s supported optimization

objectives.

FP-DNN places emphasis on the low-level optimization of a computation engine that would

support different types of NN models. The toolflow restricts its scope to cloud-based environments

with Intel FPGAs and is optimized for the high-throughput workloads of data centres. The toolflow

adopts uniform quantization across the CNN layers as specified by the user.

Caffeine and SysArrayAccel concentrated on the optimization of systolic array structures for

high-throughput CNNs. The two toolflows are restricted to Xilinx and Intel FPGAs due to their

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

56:26 S. I. Venieris et al.

Table 6. Summary of Toolflow Characteristics

Framework Name Interface NN models Devices Architecture Precision∗ DSE

fpgaConvNet
[85–88]

Caffe & Torch CNN,Res,Incep,Dense Xilinx SoC Streaming FXP (Uniform)
& FP

Global Optimizer
(Simulated Annealing)

DeepBurning [90] Caffe CNN,RNN,DNN Xilinx SoC Streaming FXP (Dynamic) Heuristic

Angel-Eye [23, 24,
68]

Caffe CNN,DNN Xilinx SoC Single-Engine FXP (Dynamic) Heuristic with
Analytical Model

ALAMO [55–59] Caffe CNN,DNN Intel SoC &
Standalone

Single-Engine FXP (Dynamic) Heuristic

Haddoc2 [1, 2] Caffe CNN,DNN Xilinx &
Intel
Standalone

Streaming FXP (Uniform) Deterministic

DnnWeaver [75,
76]

Caffe CNN,DNN Xilinx &
Intel

Single-Engine FXP (Dynamic) Custom Search
Algorithm

Caffeine [98] Caffe CNN,DNN Xilinx
Standalone

Single-Engine FXP (Uniform)
& FP

Exhaustive over Roofline
Model

AutoCodeGen [54] Proprietary
Input

CNN,DNN Xilinx
Standalone

Streaming FXP (Dynamic) Heuristic with
Analytical Model

Finn [19, 84] Theano BNN Xilinx SoC
&
Standalone

Streaming Binary Heuristic

FP-DNN [22] TensorFlow CNN,RNN,DNN,Res Intel
Standalone

Single-Engine FXP (Uniform)
& FP

Algorithmic

Snowflake [10, 21] Torch CNN,Res,Incep Xilinx SoC Single-Engine 16-bit FXP
(Uniform)

Heuristic

SysArrayAccel [91] C Program CNN,DNN Intel
Standalone

Single-Engine FXP (Uniform)
& FP

Exhaustive over
Analytical Model

FFTCodeGen [95–97,
100]

Proprietary
Input

CNN,DNN Intel HARP Single-Engine FXP (Uniform)
& FP

Roofline and Analytical
Models

* FXP: Fixed-Point, FP: Floating-Point.

use of Vivado HLS and OpenCL, respectively. SysArrayAccel draws from the lessons learned from

Caffeine’s design and its finer design space exploration method tends to yield higher performance.

However, the different target devices of the two toolflows do not allow for a meaningful perfor-

mance comparison.

ALAMO is designed to combine the high throughput and low latency of RTL designs with high

precision flexibility across layers. Nevertheless, precision quantization is performed manually and

is not part of the automated flow. The toolflow uses Intel’s off-the-shelf IPs, including the NIOS

soft processor and the scatter-gather DMA block, and hence the generated designs are restricted

and tailored for Intel FPGAs, which affects its portability across vendors.

Angel-Eye bases its competitive advantage on its automatic dynamic quantization scheme. The

selected parameter space allows for the unrolling of both the input and output feature maps and

hence latency and throughput are co-optimized.

fpgaConvNet prioritizes the support of various optimization objectives based on the application-

level performance needs to target diverse workloads. In this context, distinct methodologies are

used for high-throughput, low-latency or multiobjective applications. Similarly to Caffeine and

Angel-Eye, the use of Vivado HLS currently restricts fpgaConvNet to Xilinx devices.

DeepBurning’s design principle entails modularity and support of a wide range of NN models.

In this respect, the toolflow’s RTL building blocks can target various types of NNs, including the

emerging RNNs and LSTMs, and offer flexibility with respect to precision quantization across

the layers. By design, the generated accelerators are optimized to operate with a batch size of

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

Toolflows for Mapping CNNs on FPGAs: A Survey and Future Directions 56:27

Fig. 7. Overview of toolflow characteristics.

1, and hence their optimization objectives are simultaneously high throughput and low latency.

Similarly, AutoCodeGen also places focus on the modular design of RTL hardware blocks for high

throughput, with a more restricted scope than DeepBurning by supporting only CNN models and

with the addition of high-level performance and resource modeling.

Haddoc2 follows a direct mapping approach, where all layers and neurons in a network are

mapped deterministically to dedicated hardware resources. This approach enables achieving both

high throughput and low latency in the cases where all weights of the target CNN can be accom-

modated by the on-chip memory resources and enough logic is available to map all operators.

This assumption holds in the case of small-scale networks, such as LeNet-5 and CIFAR-10, and ag-

gressively quantized models, such as the BNNs targeted by Finn, but Haddoc2 cannot currently

handle the state-of-the-art large-scale models, due to the lack of tunable time-sharing mechanisms.

Snowflake’s design principle places programmability and high utilization of the computational

resources at the forefront. In this respect, both Snowflake’s architecture and compiler are tailored

to removing inefficiencies and extracting close to peak performance from the allocated resources.

Overall, Snowflake favors programmability over hardware specialization, by employing a fixed

hardware design and customizing with respect to the target model only at the compiler level.

Finally, FFTCodeGen addresses CNN acceleration from both an algorithmic and an architec-

tural level. In contrast to the rest of the toolflows, convolutions are performed in the frequency

domain with a significantly lower computational complexity. Moreover, the free parameters of the

algorithm and the architecture enable the generated compute engine to sustain high throughput

across convolutional layers of different sizes and fully exploit the computational complexity gains.

Furthermore, the use of the powerful, server-grade CPU of the target Intel HARP platform alle-

viates the complexities of mapping the memory-bounded fully-connected layers to hardware and

further contributes to FFTCodeGen’s throughput gains, making it suitable for throughput-driven

cloud-based applications.

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

56:28 S. I. Venieris et al.

Table 7. Benchmark Suite: CNN Models and Their Computational Challenges

Model Name Year Depth Design Principles Challenges

AlexNet [46] 2012 8 (1) Increased depth
(2) Increased layer width

(1) Non-uniform filter sizes
(2) Grouped convolutions

ZFNet [94] 2013 8 (1) Wider layers (1) Computational load
(2) Memory footprint

VGG16 [78] 2014 16 (1) Increased layer depth
(2) Uniform filter size

(1) Computational load
(2) Memory footprint

GoogLeNet [83] 2014 22 (1) Inception module (1) Irregular computations
(2) Irregular layer connectivity

ResNet-152 [33] 2015 152 (1) Residual block (1) Irregular computations
(2) Irregular layer connectivity

Inception-v4 [82] 2016 72 (1) Residual Inception block (1) Irregular computations
(2) Irregular layer connectivity

DenseNet-161 [36] 2017 161 (1) Dense block (1) Irregular computations
(2) Irregular layer connectivity

2.9 Other Related Work

Apart from the presented toolflows, several FPGA-based designs for CNNs have been proposed

by the FPGA community. These include highly optimized, hand-tuned accelerators for particular

CNN-FPGA pairs in RTL [16, 18, 49], HLS [6, 44], and mixed RTL-HLS [101], together with designs

that focus on optimizing the external memory bandwidth utilization [5, 77]. A number of existing

works lie close to the presented CNN-to-FPGA toolflows, but lack essential components that would

form a complete automated flow. These include References [15, 61, 62, 81], with References [61,

62, 81] focusing on the design space exploration task and Reference [15] presenting an FPGA back

end to Caffe, for the execution of 3 × 3 convolutional layers by means of the Winograd transform.

3 THE FUTURE OF CNN-TO-FPGA TOOLFLOWS

3.1 Toward a Uniform Evaluation Methodology

The existing FPGA toolflows have employed ad hoc evaluation methodologies, by targeting dif-

ferent CNN models and reporting the achieved performance in a non-uniform manner. A uniform

evaluation methodology is proposed here to enable the thorough and comparative evaluation of

CNN-to-FPGA toolflows. The proposed methodology comprises a benchmark suite and guidelines

for evaluation metrics.

Benchmark Suite.22 A comprehensive benchmark suite should include CNNs that are widely used

and whose accuracy has been extensively studied by the deep-learning community. Each CNN

should pose a unique hardware mapping challenge and stress the FPGA toolflow from a different

aspect. The main challenges to be addressed include CNNs that are (1) computation bounded,

(2) off-chip memory bandwidth bounded, (3) on-chip memory capacity bounded, (4) with high

layer dependency, and (5) irregular and sparse layer connectivity that challenges scheduling.

To this end, we propose a benchmark suite with the following CNN models (Table 7): AlexNet,

ZFNet, VGG16, GoogLeNet, ResNet-152, Inception-v4, and DenseNet-161. AlexNet was the win-

ner of the 2012 ILSVRC competition and its pretrained feature extractor is widely used as a start-

ing point for new applications [70], making it a fundamental CNN model in the deep-learning

community. AlexNet’s mapping challenge lies in the non-uniform filter and stride sizes across its

22The proposed benchmark suite of representative CNNs can be found at http://www.imperial.ac.uk/

intelligent-digital-systems/cnn-benchmark-suite/.

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

http://www.imperial.ac.uk/intelligent-digital-systems/cnn-benchmark-suite/

Toolflows for Mapping CNNs on FPGAs: A Survey and Future Directions 56:29

convolutional layers, including 11 × 11, 5 × 5, and 3 × 3 kernels, which can stress the utilization of

convolution engines and assess a toolflow’s mapping capabilities. As an example, the Angel-Eye

computation engine is currently tailored to 3 × 3 kernels and optimized for the VGG16 network,

which has a uniform filter size. In this case, AlexNet could evaluate Angel-Eye’s efficiency of map-

ping CONV layers that do not have 3 × 3 kernels. Moreover, fpgaConvNet derives a single stream-

ing architecture for low-latency designs. The mapping of AlexNet would examine the quality of the

derived streaming architecture of fpgaConvNet. In a similar manner, ZFNet also has non-uniform

filter sizes, consisting of 7 × 7, 5 × 5, and 3 × 3 kernels, and wider CONV layers than AlexNet,

while being used as a starting template for novel applications [72]. Both networks can lead to the

exposure of finer strengths and weaknesses and indicate potential room for improvements in the

toolflows.

VGG16 is a substantially deep model with high computation and memory requirements and

constitutes one of the most widely employed pretrained models for new applications [7]. Due

to its large computational load, number of weights and layers, it is proposed as a representative

neural network that poses challenges (1), (2), (3), and (4). Because of these challenges, the majority

of existing tools have already evaluated their design flows on VGG16.

To challenge the CNN-to-FPGA frameworks with irregular and sparse computations, the bench-

mark suite includes GoogLeNet, ResNet-152, Inception-v4, and DenseNet-161. GoogLeNet intro-

duced the Inception module that made the CNN topology more complex than conventional CNNs

by breaking the uniform layer connectivity. ResNet-152 introduced a residual block that allows

for a forward connection that bypasses intermediate layers and enabled the construction of a

152-layered network. Inception-v4 increases the CNN complexity by combining both concepts

from GoogLeNet and ResNet-152 to achieve higher performance. Despite the higher performance

of Inception-v4, pretrained versions of GoogLeNet and ResNet-152 are still widely used. Finally,

DenseNet-161 presented a dense block that enables the output of each layer to be directly con-

nected to the input of every following layer. This type of networks would provide a thorough eval-

uation of the CNN-to-FPGA toolflows. FP-DNN, ALAMO, and fpgaConvNet have already demon-

strated their performance when targeting ResNet-152, with Snowflake targeting ResNet-50 and

GoogLeNet. Since FP-DNN consists of a single Matrix Multiplication engine, the ResNet-152 map-

ping reduced to the problem of scheduling the different layers given their irregular connectivity. In

a similar manner, Snowflake’s compiler breaks down residual blocks and Inception modules into

MACC operations and schedules them over Snowflake’s accelerator. However, ALAMO and fpga-

ConvNet followed a different approach by enhancing their architectures with specialized blocks

to handle irregular networks. ALAMO designed and integrated a dedicated elementwise addition

block in its computation engine to support the residual connections of ResNets. fpgaConvNet has

introduced three specialized streaming hardware blocks, tailored for the Inception module and the

residual and dense blocks. Overall, toolflows that generate streaming architectures would have to

cope with not breaking the streaming principle of operation and demonstrate how their mapping

and scheduling methods can compare with the more flexible, single computation engine designs.

Evaluation metrics. Evaluation metrics aim to characterize the quality of a toolflow’s generated

results and highlight the various strengths and weaknesses. These metrics should include essential

attributes such as performance including throughput and latency, resource consumption, power

efficiency and application-level accuracy. Reporting all these criteria play an important role in

determining the strategic trade-offs made by a toolflow.

In terms of performance, the most commonly reported metrics are currently affected by two

limitations: (1) normalized quantities such as GOp/s/Logic and GOp/s/DSP attempt to indicate the

quality of the generated design solely as a measure of computational resource utilization. This

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

56:30 S. I. Venieris et al.

approach does not capture the available bandwidth and capacity of the off- and on-chip memory,

which can have a decisive effect on performance; (2) normalizing with a resource that is FPGA

family-specific, such as Xilinx’s LUTs or Intel’s ALMs, does not enable the fair comparison across

different vendors and across FPGA families from the same vendor. As a characteristic example, we

point to the Stratix V devices targeted by FP-DNN and ALAMO, namely Stratix V GSD5 and GXA7.

Despite the fact that both devices belong to the Stratix V family, GSD5 belongs to the GS FPGAs,

which are optimized for DSP-focused applications with an abundance of MACC operations and

hence contains 6.2× more DSPs, smaller on-chip memory and fewer ALMs, while GXA7 belongs

to the GX FPGAs, which are optimized for high-bandwidth applications and hence offers a higher

bandwidth interface to the off-chip memory, 1.14× larger on-chip memory and 1.36×more ALMs.

As a result, a single resource-normalized metric such as DSP- or logic-normalized performance

is not able to capture the quality of the generated hardware across devices that are optimized for

different application domains.

Throughput is the primary performance metric of interest in throughput-driven applications

such as high-throughput image recognition and large-scale, multi-user analytics services over

large amounts of data. Throughput is measured in GOp/s and is often achieved by processing

large batches of inputs. Latency, or response time, becomes the primary critical factor in latency-

sensitive applications, such as self-driving cars and autonomous systems, but also in particular

real-time cloud-based services. Measured in seconds, latency is the time between when an in-

put enters the computing system and when the output is produced. In such scenarios, batch

processing adds a prohibitive latency overhead and is often not an option. Different toolflows

choose to either optimize for one of the two metrics, co-optimize them simultaneously by using a

batch size of 1 or selectively optimize for one of the two based on the application’s performance

requirements.

Resource consumption is an indicator of the efficiency of the utilization of the available resources

on the target platform by the designs generated by a toolflow, including the DSPs, on-chip RAM,

logic, and FFs. Application-level accuracy is a crucial metric when approximation techniques are

employed by a toolflow for the efficient mapping of CNNs. Such techniques may include pre-

cision optimization, such as the dynamic precision quantization scheme by Angel-Eye, or lossy

compression methods, such as the SVD-based compression applied on the weights of the FC lay-

ers by Angel-Eye, and can have an impact on the application-level accuracy of the CNN. Po-

tential performance-accuracy trade-offs have to be quantified and reported in terms of accuracy

degradation.

To measure the quality of a CNN-to-FPGA toolflow, we propose the following methodology.

Throughput in GOp/s with explicitly specified GOp/network, amount of weights and batch sizes,

and latency in seconds/input with batch size of 1, to present the throughput-latency relation-

ship, should be included in the evaluation reports. Resource-normalized metrics are meaning-

ful when comparing designs that target devices from the same FPGA family optimized for the

same application domain. In this scenario, performance normalized with respect to logic and DSPs

would allow the comparison of hardware designs for the same network on FPGAs of the same

family. Power-normalized throughput and latency should also be reported for comparison with

other parallel architectures such as CPUs, GPUs, and DSPs. Since resource-normalized perfor-

mance does not capture the effect of off- and on-chip memory bandwidth and capacity despite

being critical for achieving high performance, target FPGA platform details should be included

that explicitly indicate the off- and on-chip memory specifications. All measurements should be

made for various CNNs, with emphasis on the proposed benchmark suite of the previous section,

to demonstrate the QoRs subject to the different mapping challenges posed by each benchmark

model.

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

Toolflows for Mapping CNNs on FPGAs: A Survey and Future Directions 56:31

Fig. 8. CNN computation and memory evolution (circle size is relative to the amount of weights).

3.2 Objectives of a CNN-to-FPGA Toolflow

Recent developments in deep learning have led to new challenges in the deployment of CNNs. This

section presents a set of objectives for CNN-to-FPGA toolflows based on recent research trends.

Objective 1. Targeting next-generation CNN models. Since AlexNet’s win in the 2012 ILSVRC com-

petition, a number of CNN models [33, 36, 78, 82, 83, 94] paved the way for the state-of-the-art

accuracy in visual tasks. Typically, improvements in accuracy have been achieved at the expense

of increased complexity in the structure of the CNN. In Table 7, which lists a number of represen-

tative models together with the source of challenge in their design (also visualized in Figure 8),

three main trends are identified in CNN design: (1) the increase in the depth of the models, from

the 8-layer AlexNet up to the 152-layer ResNet-152 and the 161-layer DenseNet-161, (2) the in-

creased inference workload, with an increase of 20× from AlexNet to VGG16 in GOps/input, and

(3) the introduction of novel compound components. With respect to trend (3), networks such as

GoogLeNet, ResNet-152, Inception-v4, and DenseNet-161 enhanced the CNN layers with the intro-

duction of complex blocks, as indicated in Table 7. This type of complex blocks break the uniform

connectivity and computation pattern of conventional CNNs with irregular layer connections and

challenge the automation of their mapping to hardware. Currently, ALAMO, Snowflake, FP-DNN,

and fpgaConvNet provide optimized support for residual blocks in networks. Moreover, Snowflake

and fpgaConvNet also target networks that use Inception modules, such as GoogLeNet. Finally,

fpgaConvNet supports dense blocks by means of a specialized hardware building block, tailored to

dense block structures. Nevertheless, with such compound components becoming mainstream in

the deep-learning literature, CNN-to-FPGA toolflows ought to investigate further the optimization

opportunities of their mapping to optimized hardware.

Beyond the spatial pattern recognition abilities of CNNs, Recurrent Neural Networks (RNNs) en-

hance NNs with the ability to learn data sequences by retaining memory [60]. While this broadens

the application field of neural networks, additional recurrent connections between layers intro-

duce further challenges in the parallelization of computations. RNN models, with the prominence

of LSTM networks [34], demonstrate state-of-the art accuracy in applications that require cap-

turing long-range dependencies by processing information from past inputs [89]. Thus, designing

optimized hardware units that support network architectures with such recurrence in connections

between layers is becoming an increasingly important feature for FPGA toolflows.

In contrast to the computation-bounded CNNs, RNNs and LSTMs comprise inherently memory-

bounded workloads due to the large number of matrix-vector multiplications. This property ne-

cessitates a different design approach for their optimized mapping to hardware. At the moment,

DeepBurning and FP-DNN offer support for RNNs, with FP-DNN also targeting LSTMs. In the

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

56:32 S. I. Venieris et al.

same direction, the authors of Angel-Eye together with DeePhi23 have proposed an LSTM ac-

celerator [28], but it has not been integrated into Angel-Eye. The FPGA community has further

proposed designs targeting from high-throughput data-centre services [63] to latency-critical em-

bedded setups [73]. Moreover, industrial companies such as Google [42] and Microsoft24 report

that a large fraction of their data-centre workloads are LSTM-based and have focused their efforts

on optimizing the execution of LSTMs with customized ASIC and FPGA designs, respectively. In

this context, along with the automated mapping of CNNs, end-to-end frameworks that would fo-

cus on the high-performance deployment of RNNs and LSTMs on FPGAs emerges as an essential

objective.

Objective 2. Support of compressed and sparse CNNs. Recent work from the deep-learning com-

munity has proposed techniques of reducing the inference time of CNNs, by exploiting the redun-

dancy across its trainable parameters. The existing approaches can be divided into (1) post-training

and (2) training-time methods. Post-training methods assume fully trained CNNs and add a pre-

processing step prior to deployment. Works such as References [14, 41] focus on decreasing the

computational cost of the computation-bounded CONV layers by means of the low-rank decom-

position of filters. However, works such as References [30, 50] focus on minimizing the excessive

memory footprint of the memory-bounded FC layers, by projecting the weights matrix to a lower-

dimensional space. Training-time methods attempt to create sparse CNNs by means of pruning or

sparsity regularization techniques during the training phase [31, 52]. Although the sparsification

of CNNs can reduce the theoretical computational and memory costs, the elimination of weights

and connections between layers breaks the uniformity of computation and memory accesses, and

hence requires a rethinking of the hardware mapping. At the moment, a few ASIC designs have

been proposed to tackle the challenges of compressed and sparse networks [29, 65, 102]. In this

context, there is an emerging need for the CNN-to-FPGA tools to support compressed and sparse

networks to offer competitive high-performance, low-power alternatives to the existing CPU, GPU,

and DSP platforms.

Objective 3. Support of low-precision and extremely low-precision CNNs. The robustness of CNNs

to low-precision quantization of weights and feature maps at the inference stage has been widely

studied [25, 26, 32, 35, 105]. At the moment, the majority of CNN-to-FPGA toolflows support either

uniform or dynamic quantization across layers, depending on whether the wordlengths and scal-

ing at each layer are the same. Angel-Eye, ALAMO, DnnWeaver, DeepBurning, and AutoCode-

Gen support dynamic quantization, with a fixed, uniform wordlength and different scaling across

layers. The focus on quantization has been taken a step further by Angel-Eye, which employs

an automated quantization method to automatically determine the scaling for each layer of the

target network, given a fixed wordlength. Nevertheless, existing works have been investigating

more irregular quantization schemes, with the ASIC designs of References [3, 43] varying both the

wordlength and scaling of each layer of the network and mapping the variable-wordlength com-

putations on optimized bit-serial arithmetic units, and Intel Nervana proposing a custom floating-

point variant format [45]. The robustness of CNNs to quantization offers CNN-to-FPGA toolflows

the opportunity to explore and integrate automatic quantization methodologies as part of their

design flows. Adding precision quantization as a design dimension can offer more room for cus-

tomization in the architectural design space, provide a closer coupling of network and hardware

design, and offer more room for improvement over CPU, GPU, and DSP counterparts that cannot

benefit from this type of fine-grained data representation optimizations.

23http://www.deephi.com/.
24https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/.

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

http://www.deephi.com/
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/

Toolflows for Mapping CNNs on FPGAs: A Survey and Future Directions 56:33

In the same context, Ternary [4, 107] and Binary [37, 69] CNNs form extreme—but widely

studied—cases of low-precision CNNs. It has been demonstrated that the accuracy degradation

introduced by training popular CNN models on that level of precision (using 1- or 2-bit weights

and feature maps) does not have a considerable effect for several real-life applications, while their

reduced memory footprint offers significant space for acceleration with customized hardware. In

this context, Finn was the first FPGA framework to undertake the challenge of optimizing hard-

ware units for BNNs. With more studies on the optimization of FPGA-based BNNs [51, 103] and

ternary networks [67], the automated optimized mapping of binary and ternary operations can

offer FPGAs a competitive advantage over competing platforms that cannot be customized to ef-

ficiently support such operations.

Objective 4. Integration with the existing deep-learning infrastructure. So far, Caffe has been the

best-supported framework by CNN-to-FPGA automated tools, as discussed in Section 2.2.1. How-

ever, other interfaces such as TensorFlow by Google seem to gain attention by the academic

and industrial communities because of the wide variety of supported machine-learning mod-

els and the provided flexibility for deployment across different heterogeneous systems. While

FP-DNN provides back-end support for TensorFlow, building the necessary infrastructure for

newer deep-learning frameworks, such as MXNet, PyTorch, Caffe2, CoreML, and CNTK, and

developing methodologies that can efficiently process the Intermediate Representation (IR) of

each framework to yield optimized FPGA mappings can constitute a critical factor in exposing

the deployment of CNNs on FPGAs to the wide community of deep-learning researchers and

practitioners.

As a recent example toward this direction, Xilinx introduced reVISION,25 a resource suite that

allows rapid development of highly responsive embedded-vision reconfigurable systems, through

a software-level design flow. The reVISION stack enables the combination of machine-learning and

computer vision algorithms with reconfigurable devices, while allowing sensor fusion and high-

level connectivity and supporting standard frameworks such as Caffe for application development.

Objective 5. FPGA-based CNN training. In both academic and industrial work, GPUs constitute

the main computing platform for the acceleration of the training task. Big industrial companies

such as Facebook and Baidu typically employ GPU-powered clusters, situated in data centres, to

handle model training. For data centres, the power and cooling infrastructure costs constitute one

of the most critical factors of the operational expenses. Since GPUs provide high performance at

the expense of high power consumption, they become costly platforms to maintain. This fact has

led Google to design and deploy the Tensor Processing Unit (TPU) ASIC [42] in its servers for the

training and inference stage of machine-learning models. With next-generation FPGAs achieving

promising performance and power efficiency [64], FPGAs can provide a high-performance, low-

power alternative back end for the training task. To this end, big industrial companies such as

Microsoft [9] and Amazon26 have modified their data centre facilities to host FPGAs and offer

opportunities for the training of neural network models using FPGAs. Moreover, recent advances

in low-precision neural network training [12, 13, 38, 92, 106] offer room for customization and

variable-precision arithmetic that suits FPGA-based computing and cannot be efficiently exploited

by conventional programmable platforms. At the moment, FPGA-based CNN training has only

slightly been explored [66, 104] with a lot of space for further investigation.

Objective 6. Hardware-Network co-design. Ideally, a fully automated CNN framework would pro-

vide an end-to-end toolchain. Starting from a user-specified dataset and a target application, the

25https://www.xilinx.com/revision.
26https://aws.amazon.com/ec2/instance-types/f1/.

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

https://www.xilinx.com/revision
https://aws.amazon.com/ec2/instance-types/f1/

56:34 S. I. Venieris et al.

tool would start by analysing the data and proposing an initial neural network model. By including

the hardware performance and power consumption as metrics in the training phase, the hardware

tunable parameters and the model weights and topology would be jointly modified during the op-

timization process to co-optimize both the application-level accuracy and the required inference

execution time and power consumption. Such a methodology would encompass the algorithmic

model design together with the generation of efficient hardware under a holistic view that could

potentially close the loop between CNN design and implementation. We envision frameworks that

would provide this functionality as a long-term objective for the community to make steps toward

the efficient hardware execution of high-performing neural networks.

4 CONCLUSION

This article presents a survey of CNN-to-FPGA toolflows. A comparative analysis of their main

characteristics and features indicates the strengths and weaknesses of each toolflow together with

its mapping techniques. The non-uniform evaluation methodologies that have been employed so

far introduce limitations in the comparison between the toolflows and fall short of taking into

account both the computational and memory resources of the target FPGA platform. To this end,

a comprehensive benchmark suite and thorough evaluation metrics are proposed to lead to fur-

ther and more rapid developments in CNN-to-FPGA toolflows. Moreover, based on recent devel-

opments in deep learning, promising research directions and future objectives are identified to

address the emerging challenges of the field, exploit FPGA-specific performance optimizations,

and enhance the accessibility of FPGAs to the wide community of deep learning.

REFERENCES

[1] Kamel Abdelouahab, Cédric Bourrasset, Maxime Pelcat, François Berry, Jean-Charles Quinton, and Jocelyn Serot.

2016. A holistic approach for optimizing DSP block utilization of a CNN implementation on FPGA. In Proceedings

of the 10th International Conference on Distributed Smart Camera (ICDSC’16). ACM, New York, NY, 69–75.

[2] K. Abdelouahab, M. Pelcat, J. Sérot, C. Bourrasset, and F. Berry. 2017. Tactics to directly map CNN graphs on em-

bedded FPGAs. IEEE Embed. Syst. Lett. 9, 4, 113–116.

[3] Jorge Albericio et al. 2017. Bit-pragmatic deep neural network computing. In Proceedings of the 50th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO’17). ACM, New York, NY, 382–394.

[4] H. Alemdar, V. Leroy, A. Prost-Boucle, and F. Pétrot. 2017. Ternary neural networks for resource-efficient AI appli-

cations. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN’17). 2547–2554.

[5] M. Alwani, H. Chen, M. Ferdman, and P. Milder. 2016. Fused-layer CNN accelerators. In Proceedings of the 2016 49th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’16). 1–12.

[6] Utku Aydonat, Shane O’Connell, Davor Capalija, Andrew C. Ling, and Gordon R. Chiu. 2017. An OpenCL deep learn-

ing accelerator on Arria 10. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays (FPGA’17). ACM, New York, NY, 55–64.

[7] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. 2017. SegNet: A deep convolutional encoder-decoder

architecture for scene segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 12, 2481–2495.

[8] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Tomasz Czajkowski, Stephen D.

Brown, and Jason H. Anderson. 2013. LegUp: An open-source high-level synthesis tool for FPGA-based proces-

sor/accelerator systems. ACM Trans. Embed. Comput. Syst. 13, 2, Article 24, 27 pages.

[9] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.

Y. Kim, D. Lo, T. Massengill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka, D. Chiou, and D. Burger. 2016. A

cloud-scale acceleration architecture. In Proceedings of the 2016 49th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO’16). 1–13.

[10] Andre Xian Ming Chang, Aliasger Zaidy, Vinayak Gokhale, and Eugenio Culurciello. 2017. Compiling deep learning

models for custom hardware accelerators. arXiv:1708.00117.

[11] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. 2015. DeepDriving: Learning affordance for direct per-

ception in autonomous driving. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV’15).

IEEE, Los Alamitos, CA, 2722–2730.

[12] X. Chen, X. Hu, H. Zhou, and N. Xu. 2017. FxpNet: Training a deep convolutional neural network in fixed-point

representation. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN’17). 2494–2501.

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

Toolflows for Mapping CNNs on FPGAs: A Survey and Future Directions 56:35

[13] Christopher De Sa, Matthew Feldman, Christopher Ré, and Kunle Olukotun. 2017. Understanding and optimizing

asynchronous low-precision stochastic gradient descent. In Proceedings of the 44th Annual International Symposium

on Computer Architecture (ISCA’17). ACM, New York, NY, 561–574.

[14] Emily Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. 2014. Exploiting linear structure within

convolutional networks for efficient evaluation. In Proceedings of the 27th International Conference on Neural Infor-

mation Processing Systems (NIPS’14). 1269–1277.

[15] R. DiCecco, G. Lacey, J. Vasiljevic, P. Chow, G. Taylor, and S. Areibi. 2016. Caffeinated FPGAs: FPGA framework for

convolutional neural networks. In Proceedings of the 2016 International Conference on Field-Programmable Technology

(FPT’16). 265–268.

[16] Aysegul Dundar, Jonghoon Jin, Berin Martini, and Eugenio Culurciello. 2017. Embedded streaming deep neural

networks accelerator with applications. IEEE Trans. Neural Netw. Learn. Syst. 28, 7, 1572–1583.

[17] Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter, Helen M. Blau, and Sebastian Thrun.

2017. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118.

[18] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Culurciello. 2010. Hardware accelerated convolutional

neural networks for synthetic vision systems. In Proceedings of 2010 IEEE International Symposium on Circuits and

Systems. 257–260.

[19] Nicholas J. Fraser, Yaman Umuroglu, Giulio Gambardella, Michaela Blott, Philip Leong, Magnus Jahre, and Kees

Vissers. 2017. Scaling binarized neural networks on reconfigurable logic. In Proceedings of the 8th Workshop and

the 6th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and

Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM’17). ACM, New York,

NY, 25–30.

[20] D. Gandhi, L. Pinto, and A. Gupta. 2017. Learning to fly by crashing. In Proceedings of the 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS’17). 3948–3955.

[21] Vinayak Gokhale, Aliasger Zaidy, Andre Xian Ming Chang, and Eugenio Culurciello. 2017. Snowflake: An efficient

hardware accelerator for convolutional neural networks. In Proceedings of the 2017 IEEE International Symposium on

Circuits and Systems (ISCAS’17).

[22] Yijin Guan, Hao Liang, Ningyi Xu, Wenqiang Wang, Shaoshuai Shi, Xi Chen, Guangyu Sun, Wei Zhang, and Jason

Cong. 2017. FP-DNN: An automated framework for mapping deep neural networks onto FPGAs with RTL-HLS hy-

brid templates. In Proceedings of the 2017 IEEE 25th Annual International Symposium on Field-Programmable Custom

Computing Machines (FCCM’17). 152–159.

[23] Kaiyuan Guo, Lingzhi Sui, Jiantao Qiu, Song Yao, Song Han, Yu Wang, and Huazhong Yang. 2016. Angel-Eye: A

complete design flow for mapping CNN onto customized hardware. In Proceedings of the 2016 IEEE Computer Society

Annual Symposium on VLSI (ISVLSI’16). 24–29.

[24] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, Y. Wang, and H. Yang. 2018. Angel-Eye: A complete design flow

for mapping CNN onto embedded FPGA. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 37, 1, 35–47.

[25] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. 2015. Deep learning with limited

numerical precision. In Proceedings of the 32nd International Conference on Machine Learning (ICML’15). 1737–1746.

[26] Philipp Gysel, Mohammad Motamedi, and Soheil Ghiasi. 2016. Hardware-oriented approximation of convolutional

neural networks. In Proceedings of the Workshop Contribution at International Conference on Learning Representations

(ICLR’16).

[27] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solomatnikov, Benjamin C. Lee, Stephen Richard-

son, Christos Kozyrakis, and Mark Horowitz. 2010. Understanding sources of inefficiency in general-purpose chips.

In Proceedings of the 37th Annual International Symposium on Computer Architecture (ISCA’10). ACM, New York, NY,

37–47.

[28] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang Xie, Hong Luo, Song Yao, Yu Wang,

Huazhong Yang, and William (Bill) J. Dally. 2017. ESE: Efficient speech recognition engine with sparse LSTM on

FPGA. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA’17).

ACM, New York, NY, 75–84.

[29] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and William J. Dally. 2016. EIE:

Efficient inference engine on compressed deep neural network. In Proceedings of the 2016 ACM/IEEE 43rd Annual

International Symposium on Computer Architecture (ISCA’16). IEEE, Los Alamitos, CA, 243–254.

[30] Song Han, Huizi Mao, and William J. Dally. 2016. Deep compression: Compressing deep neural network with prun-

ing, trained quantization and Huffman coding. In Proceedings of the International Conference on Learning Represen-

tations (ICLR’16).

[31] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights and connections for efficient neural

network. In Proceedings of the 28th International Conference on Neural Information Processing Systems (NIPS’15).

1135–1143.

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

56:36 S. I. Venieris et al.

[32] S. Hashemi, N. Anthony, H. Tann, R. I. Bahar, and S. Reda. 2017. Understanding the impact of precision quantiza-

tion on the accuracy and energy of neural networks. In Proceedings of the Design, Automation, and Test in Europe

Conference Exhibition (DATE’17). 1474–1479.

[33] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image recognition. In Proceedings of the 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16). 770–778.

[34] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Comput. 9, 8, 1735–1780.

[35] J. L. Holi and J. N. Hwang. 1993. Finite precision error analysis of neural network hardware implementations. IEEE

Trans. Comput. 42, 3, 281–290.

[36] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. 2017. Densely connected convolutional

networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17). 2261–

2269.

[37] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. 2016. Binarized neural net-

works. In Advances in Neural Information Processing Systems 29. 4107–4115.

[38] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. 2016. Quantized neural net-

works: Training neural networks with low precision weights and activations. arXiv:1609.07061.

[39] G. Inggs, S. Fleming, D. Thomas, and W. Luk. 2014. Is high level synthesis ready for business? A computational

finance case study. In Proceedings of the 2014 International Conference on Field-Programmable Technology (FPT’14).

12–19.

[40] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing

internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning (ICML’15). 448–456.

[41] M. Jaderberg, A. Vedaldi, and A. Zisserman. 2014. Speeding up convolutional neural networks with low rank expan-

sions. In Proceedings of the British Machine Vision Conference (BMVC’14).

[42] Norman P. Jouppi et al. 2017. In-datacenter performance analysis of a tensor processing unit. In Proceedings of the

44th Annual International Symposium on Computer Architecture (ISCA’17). ACM, New York, NY, 1–12.

[43] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos. 2016. Stripes: Bit-serial deep neural net-

work computing. In Proceedings of the 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO’16). 1–12.

[44] J. H. Kim, B. Grady, R. Lian, J. Brothers, and J. H. Anderson. 2017. FPGA-based CNN inference accelerator synthe-

sized from multi-threaded C software. In Proceedings of the 2017 30th IEEE International System-on-Chip Conference

(SOCC’17). 268–273.

[45] Urs Köster, Tristan Webb, Xin Wang, Marcel Nassar, Arjun K. Bansal, William Constable, Oguz Elibol, Stewart Hall,

Luke Hornof, Amir Khosrowshahi, Carey Kloss, Ruby J. Pai, and Naveen Rao. 2017. Flexpoint: An adaptive numerical

format for efficient training of deep neural networks. In Advances in Neural Information Processing Systems 30. 1740–

1750.

[46] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep convolutional

neural networks. In Advances in Neural Information Processing Systems 25. 1097–1105.

[47] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning applied to document recognition. Proc.

IEEE (Nov. 1998), 2278–2324.

[48] E. A. Lee and D. G. Messerschmitt. 1987. Synchronous data flow. Proc. IEEE 8, 11, 1235–1245.

[49] Huimin Li, Xitian Fan, Li Jiao, Wei Cao, Xuegong Zhou, and Lingli Wang. 2016. A high performance FPGA-based

accelerator for large-scale convolutional neural networks. In Proceedings of the 2016 26th International Conference

on Field Programmable Logic and Applications (FPL’16). 1–9.

[50] Jinyu Li, Jian Xue, and Yifan Gong. 2013. Restructuring of deep neural network acoustic models with singular value

decomposition. In Proceedings of the Annual Conference of the International Speech Communication Association (IN-

TERSPEECH’13).

[51] Shuang Liang, Shouyi Yin, Leibo Liu, Wayne Luk, and Shaojun Wei. 2018. FP-BNN: Binarized neural network on

FPGA. Neurocomputing 275, C, 1072–1086.

[52] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Penksy. 2015. Sparse convolutional neural

networks. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15). 806–814.

[53] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C. Berg.

2016. SSD: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision (ECCV’16).

21–37.

[54] Zhiqiang Liu, Yong Dou, Jingfei Jiang, and Jinwei Xu. 2016. Automatic code generation of convolutional neural

networks in FPGA implementation. In Proceedings of the 2016 International Conference on Field-Programmable Tech-

nology (FPT’16). 61–68.

[55] Y. Ma, Y. Cao, S. Vrudhula, and J. s. Seo. 2017. An automatic RTL compiler for high-throughput FPGA implemen-

tation of diverse convolutional neural networks. In Proceedings of the 2017 27th International Conference on Field

Programmable Logic and Applications (FPL’17). 1–8.

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

Toolflows for Mapping CNNs on FPGAs: A Survey and Future Directions 56:37

[56] Yufei Ma, Yu Cao, Sarma Vrudhula, and Jae sun Seo. 2017. Optimizing loop operation and dataflow in FPGA accel-

eration of deep convolutional neural networks. In Proceedings of the 2017 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays (FPGA’17). ACM, New York, NY, 45–54.

[57] Yufei Ma, Minkyu Kim, Yu Cao, Sarma Vrudhula, and Jae Sun Seo. 2017. End-to-end scalable FPGA accelerator for

deep residual networks. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS’17).

IEEE, Los Alamitos, CA, 1–4. DOI:http://dx.doi.org/10.1109/iscas.2017.8050344

[58] Yufei Ma, Naveen Suda, Yu Cao, Jae Sun Seo, and Sarma Vrudhula. 2016. Scalable and modularized RTL compila-

tion of convolutional neural networks onto FPGA. In Proceedings of the 2016 26th International Conference on Field

Programmable Logic and Applications (FPL’16). 1–8.

[59] Yufei Ma, Naveen Suda, Yu Cao, Sarma Vrudhula, and Jae Sun Seo. 2018. ALAMO: FPGA acceleration of deep learning

algorithms with a modularized RTL compiler. Integration, the VLSI Journal. DOI:10.1016/j.vlsi.2017.12.009

[60] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. 2010. Recurrent neural net-

work based language model. In Proceedings of the Annual Conference of the International Speech Communication

Association (INTERSPEECH’10).

[61] M. Motamedi, P. Gysel, V. Akella, and S. Ghiasi. 2016. Design space exploration of FPGA-based deep convolutional

neural networks. In Proceedings of the 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC’16).

575–580.

[62] Mohammad Motamedi, Philipp Gysel, and Soheil Ghiasi. 2017. PLACID: A platform for FPGA-based accelerator

creation for DCNNs. ACM Trans. Multimedia Comput. Commun. Appl. 13, 4, Article 62, 21 pages.

[63] E. Nurvitadhi, Jaewoong Sim, D. Sheffield, A. Mishra, S. Krishnan, and D. Marr. 2016. Accelerating recurrent neural

networks in analytics servers: Comparison of FPGA, CPU, GPU, and ASIC. In Proceedings of the 2016 26th Interna-

tional Conference on Field Programmable Logic and Applications (FPL’16). 1–4.

[64] Eriko Nurvitadhi, Suchit Subhaschandra, Guy Boudoukh, Ganesh Venkatesh, Jaewoong Sim, Debbie Marr, Randy

Huang, Jason Ong Gee Hock, Yeong Tat Liew, Krishnan Srivatsan, and Duncan Moss. 2017. Can FPGAs Beat GPUs in

accelerating next-generation deep neural networks? In Proceedings of the 2017 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays (FPGA’17). ACM, Los Alamitos, CA, 5–14.

[65] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan Venkatesan, Brucek Khailany,

Joel Emer, Stephen W. Keckler, and William J. Dally. 2017. SCNN: An accelerator for compressed-sparse con-

volutional neural networks. In Proceedings of the 44th Annual International Symposium on Computer Architecture

(ISCA’17). ACM, New York, NY, 27–40.

[66] Jongse Park, Hardik Sharma, Divya Mahajan, Joon Kyung Kim, Preston Olds, and Hadi Esmaeilzadeh. 2017. Scale-

out acceleration for machine learning. In Proceedings of the 50th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO’17). ACM, New York, NY, 367–381.

[67] A. Prost-Boucle, A. Bourge, F. Pétrot, H. Alemdar, N. Caldwell, and V. Leroy. 2017. Scalable high-performance archi-

tecture for convolutional ternary neural networks on FPGA. In Proceedings of the 2017 27th International Conference

on Field Programmable Logic and Applications (FPL’17). 1–7.

[68] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen Song,

Yu Wang, and Huazhong Yang. 2016. Going deeper with embedded FPGA platform for convolutional neural network.

In Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA’16). ACM,

New York, NY, 26–35.

[69] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016. XNOR-Net: ImageNet classifica-

tion using binary convolutional neural networks. In Proceedings of the European Conference on Computer Vision

(ECCV’16).

[70] Joseph Redmon and Anelia Angelova. 2015. Real-time grasp detection using convolutional neural networks. In Pro-

ceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA’15). 1316–1322.

[71] Colin R. Reeves (Ed.). 1993. Modern Heuristic Techniques for Combinatorial Problems. John Wiley & Sons, New York,

NY.

[72] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2017. Faster R-CNN: Towards real-time object detection

with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 6, 1137–1149.

[73] Michalis Rizakis, Stylianos I. Venieris, Alexandros Kouris, and Christos-Savvas Bouganis. 2018. Approximate FPGA-

based LSTMs under computation time constraints. In Proceedings of the 14th International Symposium on Applied

Reconfigurable Computing (ARC’18).

[74] J. Shao, C. C. Loy, K. Kang, and X. Wang. 2017. Crowded scene understanding by deeply learned volumetric slices.

IEEE Trans. Circ. Syst. Video Technol. 27, 3, 613–623.

[75] Hardik Sharma, Jongse Park, Emmanuel Amaro, Bradley Thwaites, Praneetha Kotha, Anmol Gupta, Joon Kyung Kim,

Asit Mishra, and Hadi Esmaeilzadeh. 2016. DnnWeaver: From high-level deep network models to FPGA acceleration.

In Proceedings of the Workshop on Cognitive Architectures.

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

http://dx.doi.org/10.1109/iscas.2017.8050344
10.1016/j.vlsi.2017.12.009

56:38 S. I. Venieris et al.

[76] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro, Joon Kyung Kim, Chenkai Shao, Asit Mishra, and

Hadi Esmaeilzadeh. 2016. From high-level deep neural models to FPGAs. In Proceedings of the 2016 49th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO’16). 1–12.

[77] Yongming Shen, Michael Ferdman, and Peter Milder. 2017. Escher: A CNN accelerator with flexible buffering to min-

imize off-chip transfer. In Proceedings of the 2017 IEEE 25th Annual International Symposium on Field-Programmable

Custom Computing Machines (FCCM’17). 93–100.

[78] K. Simonyan and A. Zisserman. 2015. Very deep convolutional networks for large-scale image recognition. In Pro-

ceedings of the International Conference on Learning Representations (ICLR’15).

[79] Nikolai Smolyanskiy, Alexey Kamenev, Jeffrey Smith, and Stan Birchfield. 2017. Toward low-flying autonomous

MAV trail navigation using deep neural networks for environmental awareness. In Proceedings of the 2017 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS’17). 4241–4247.

[80] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: A

simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958.

[81] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei Ma, Sarma Vrudhula, Jae Sun Seo, and Yu

Cao. 2016. Throughput-optimized OpenCL-based FPGA accelerator for large-scale convolutional neural networks.

In Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA’16). ACM,

New York, NY, 16–25.

[82] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander Alemi. 2017. Inception-v4, inception-ResNet

and the impact of residual connections on learning. In Proceedings of the AAAI Conference on Artificial Intelligence.

[83] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,

Vincent Vanhoucke, and Andrew Rabinovich. 2015. Going deeper with convolutions. In Proceedings of the 2015

IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15). 1–9.

[84] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip Leong, Magnus Jahre, and Kees

Vissers. 2017. FINN: A framework for fast, scalable binarized neural network inference. In Proceedings of the 2017

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA’17). ACM, New York, NY, 65–74.

[85] Stylianos I. Venieris and Christos-Savvas Bouganis. 2017. fpgaConvNet: A toolflow for mapping diverse convolu-

tional neural networks on embedded FPGAs. In Proceedings of the Workshop on Machine Learning on the Phone and

Other Consumer Devices (MLPCD’17).

[86] Stylianos I. Venieris and Christos-Savvas Bouganis. 2016. fpgaConvNet: A framework for mapping convolu-

tional neural networks on FPGAs. In Proceedings of the 2016 IEEE 24th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM’16). 40–47.

[87] Stylianos I. Venieris and Christos-Savvas Bouganis. 2017. fpgaConvNet: Automated mapping of convolutional neu-

ral networks on FPGAs (abstract only). In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays (FPGA’17). ACM, New York, NY, 291–292.

[88] Stylianos I. Venieris and Christos-Savvas Bouganis. 2017. Latency-driven design for FPGA-based convolutional neu-

ral networks. In Proceedings of the 2017 27th International Conference on Field Programmable Logic and Applications

(FPL’17). 1–8.

[89] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. 2017. Show and tell: Lessons learned from the 2015 MSCOCO image

captioning challenge. IEEE Trans. Pattern Anal. Mach. Intell. 39, 4, 652–663.

[90] Ying Wang, Jie Xu, Yinhe Han, Huawei Li, and Xiaowei Li. 2016. DeepBurning: Automatic generation of FPGA-

based learning accelerators for the neural network family. In Proceedings of the 2016 53nd ACM/EDAC/IEEE Design

Automation Conference (DAC’16). Article 110, 6 pages.

[91] Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang, Han Hu, Yun Liang, and Jason Cong. 2017.

Automated systolic array architecture synthesis for high throughput CNN inference on FPGAs. In Proceedings of the

54th Annual Design Automation Conference (DAC’17). ACM, New York, NY, Article 29, 6 pages.

[92] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2017. TernGrad: Ternary gra-

dients to reduce communication in distributed deep learning. In Advances in Neural Information Processing Systems

30. 1508–1518.

[93] Samuel Williams et al. 2009. Roofline: An insightful visual performance model for multicore architectures. Commun.

ACM 52, 4, 65–76.

[94] Matthew D. Zeiler and Rob Fergus. 2014. Visualizing and understanding convolutional networks. In Proceedings of

the European Conference on Computer Vision (ECCV’14).

[95] Hanqing Zeng, Ren Chen, Chi Zhang, and Viktor Prasanna. 2018. A framework for generating high throughput

CNN implementations on FPGAs. In Proceedings of the International Symposium on Field-Programmable Gate Arrays

(FPGA’18).

[96] Hanqing Zeng, Chi Zhang, and Viktor Prasanna. 2017. Fast generation of high throughput customized deep learning

accelerators on FPGAs. In Proceedings of the 2017 International Conference on Reconfigurable Computing and FPGAs

(ReConFig’17).

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

Toolflows for Mapping CNNs on FPGAs: A Survey and Future Directions 56:39

[97] Hanqing Zeng, Chi Zhang, and Viktor Prasanna. 2017. Optimizing Frequency Domain Implementation of CNNs on

FPGAs. Technical Report. University of Southern California.

[98] Chen Zhang, Zhenman Fang, Peipei Zhou, Peichen Pan, and Jason Cong. 2016. Caffeine: Towards uniformed repre-

sentation and acceleration for deep convolutional neural networks. In Proceedings of the 35th International Conference

on Computer-Aided Design (ICCAD’16). ACM, New York, NY, Article 12, 8 pages.

[99] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. 2015. Optimizing FPGA-based

accelerator design for deep convolutional neural networks. In Proceedings of the 2015 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays (FPGA’15). ACM, New York, NY, 161–170.

[100] Chi Zhang and Viktor Prasanna. 2017. Frequency domain acceleration of convolutional neural networks on

CPU-FPGA shared memory system. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays (FPGA’17). ACM, New York, NY, 35–44.

[101] Jialiang Zhang and Jing Li. 2017. Improving the performance of OpenCL-based FPGA accelerator for convolutional

neural network. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays

(FPGA’17). ACM, New York, NY, 25–34.

[102] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y. Chen. 2016. Cambricon-X: An accelerator

for sparse neural networks. In Proceedings of the 2016 49th Annual IEEE/ACM International Symposium on Microar-

chitecture (MICRO’16). 1–12.

[103] Ritchie Zhao, Weinan Song, Wentao Zhang, Tianwei Xing, Jeng-Hau Lin, Mani Srivastava, Rajesh Gupta, and Zhiru

Zhang. 2017. Accelerating binarized convolutional neural networks with software-programmable FPGAs. In Pro-

ceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA’17). ACM, New

York, NY, 15–24.

[104] Wenlai Zhao, Haohuan Fu, Wayne Luk, Teng Yu, Shaojun Wang, Bo Feng, Yuchun Ma, and Guangwen Yang. 2016.

F-CNN: An FPGA-based framework for training convolutional neural networks. In Proceedings of the 2016 IEEE 27th

International Conference on Application-Specific Systems, Architectures, and Processors (ASAP’16). 107–114.

[105] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. 2017. Incremental network quantization: Towards

lossless CNNs with low-precision weights. In Proceedings of the International Conference on Learning Representations

(ICLR’17).

[106] Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou. 2016. DoReFa-net: Training low

bitwidth convolutional neural networks with low bitwidth gradients. arXiv:1601.06160.

[107] Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. 2017. Trained ternary quantization. In Proceedings of

the International Conference on Learning Representations (ICLR’17).

Received July 2017; revised February 2018; accepted February 2018

ACM Computing Surveys, Vol. 51, No. 3, Article 56. Publication date: June 2018.

